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Abstract

3D parametric deformable models have been used to

extract volumetric object boundaries and they generate s-

mooth boundary surfaces as results. However, in some

segmentation cases, such as cerebral cortex with complex

folds and creases, and human lung with high curvature

boundary, parametric deformable models often suffer from

over-smoothing or decreased mesh quality during model

deformation. To address this problem, we propose a 3D

Laplacian-driven parametric deformable model with a new

internal force. Derived from a Mesh Laplacian, the internal

force exerted on each control vertex can be decomposed in-

to two orthogonal vectors based on the vertex’s tangential

plane. We then introduce a weighting function to control the

contributions of the two vectors based on the model mesh’s

geometry. Deforming the new model is solving a linear sys-

tem, so the new model can converge very efficiently. To

validate the model’s performance, we tested our method on

various segmentation cases and compared our model with

Finite Element and Level Set deformable models.

1. Introduction

Deformable models have been used extensively in image

segmentation. According to their representation and imple-

mentation, they can be classified as either parametric (ex-

plicit) or geometric (implicit) deformable models. Paramet-

ric deformable models, with Snakes [5] as a representative,

represent the model boundary parametrically using spline

curves or parametric surfaces. They have associated inter-

nal smoothness forces and are also influenced by external

image forces. Using 3D parametric models [10] for seg-

menting objects in medical image volumes has the advan-

tages of directly extracting a smooth boundary surface and

guaranteeing coherence between images slices. The main

concern with 3D parametric models is the computational

cost due to a large number of variables. Thus Finite Ele-

ment Method (FEM) based parametric deformable models

are widely used [2], [18], [17]. Using FEM, the model is

represented as a continuous surface in the form of weight-

ed sums of local polynomial basis functions. By encoding

the spatial information and connectivity about the vertices

into the stiffness matrix, deformation of the model is solved

through a linear system, which is efficient. Because the in-

ternal forces keep the model surface smooth, on one hand,

FEM models have been shown to achieve good results in

segmenting objects with smooth boundary such as the left

ventricle [17]; on the other hand, these models often have

difficulty delineating the boundary of objects with complex

folds and creases, or high curvature regions.

The other class of deformable models is level set based

geometric models [9], [19]. This approach represents a

curve or a surface implicitly as the zero level set of a higher-

dimensional scalar function (level set function). And lev-

el set models deform based on the theory of curve evolu-

tion with their speed function specifically designed to incor-

porate image gradient information. Geometric deformable

models have been adopted with considerable success for

image segmentation since they are parametrization-free and

can be easily extended from 2D to 3D. Their topology flex-

ibility also allows the extraction of multiple objects simul-

taneously. The topology-freedom is not always desirable,

however. For instance, a fixed-topology model may be

more suitable when the object of interest is specified and

its topology is known [18]. Thus, topology-preserving level

set methods have been proposed [4], [16], in which tests are

conducted and steps are taken to process the computed level

set functions to prevent undesirable topology changes.

In this paper, we consider the problem of segmenting a

specific object with known topology in 3D. Both parametric

deformable models and topology-preserving level set mod-

els are applicable. While parametric models directly extract

object surfaces represented by triangular meshes, tradition-

al FEM models suffer from over-smoothing and can not
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Figure 1. Cerebral cortex segmentation on simulated MRI images provided by BrainWeb (http://www.bic.mni.mcgill.ca/brainweb/). The

external forces of (a), (b) and (c) are defined in (23). The internal forces of (b) and (c) are based on the stiffness matrix A in (2). (a) The

result of our method, (b) the result of a traditional FEM based 3D deformable model, (c) the result of the FEM based model with weaker

internal force, (d) the result of the Active Contour Without Edges [1] after surface reconstruction, and (e) the result of Distance Regularized

Level Set Evolution [6] after surface reconstruction.

give satisfactory results when segmenting objects with com-

plex surface structure or high curvature regions. Topology-

preserving level set, on the other hand, will require extra

processing steps to reconstruct the boundary surface from

its binary map result, and to prevent change of topology.

We propose a new method that modifies the internal forces

exerted on a non-FEM parametric deformable model in or-

der to overcome over-smoothing and directly extract object

boundary as a high-quality triangular mesh.

The proposed new model is represented as a simplex

mesh. Its internal forces are derived from the mesh Lapla-

cian, which is widely used in mesh shape optimization and

editing [13], [21]. By decomposing the Laplacian of each

vertex into two orthogonal vectors—one on and another

perpendicular to the vertex’s tangential plane, we observe

that (i) the tangential vector is always desirable in preserv-

ing mesh quality, (ii) the perpendicular vector has double

effects—on the positive side, it helps overcome local min-

ima caused by noise in images during segmentation, and

on the negative side, it is found to cause the mesh’s over-

smoothing problem. The new 3D deformable model we

introduce has internal forces that keep fully the vector pro-

jected onto the tangential plane since it helps maintain mesh

quality. The contribution of the other vector perpendicu-

lar to the tangential plane is automatically adjusted through

a weighting function defined based on current mesh quali-

ty. We demonstrate that, on segmenting objects with com-

plex or high-curvature boundary surfaces such as the brain

cerebral cortex (Figure 1) or lung (Figure 6), our method

achieves better segmentation results than traditional FEM

based 3D deformable model and level set methods [1], [6],

in terms of accuracy and quality of the resulting boundary

surface mesh. Furthermore, the new model can still deform

efficiently since model deformation is derived by solving a

linear system in which the matrix is very sparse.

2. Background

In this section, we briefly review the mathematical def-

inition of traditional FEM based deformable models using

a continuous piecewise-linear basis function1. We analyze

the internal forces on these models to discuss the cause of

the over-smoothing problem.

2.1. 3D FEM based Deformable Models

A 3D FEM deformable model is an elastic surface dis-

cretized as a simplex mesh (or finite element triangulation),

which can deform under the influence of internal smooth-

ness forces and external image forces derived from the mod-

el’s energy function. The mesh Λ is represented as a graph

G = (V,E), with vertices V and edges E. Given the

basis function φi of the ith vertex vi and the number of

vertices n = |V|, the deformable model is represented by

Λ(x) =
∑n

i=1 φi(x)vi, in which x ∈ R
3. And the basis

function φi(vj) is defined as

φi(vj) =

{
1 i = j,
0 i 6= j,

(1)

where φi is a continuous piecewise linear function, and vi

and vj are the ith and jth vertices of the model.

Given the external force vector F ext
V =

[fext
1 , fext

2 , ..., fext
n ]T , minimizing the energy function

is done by solving

AV = F ext
V , (2)

where matrix A is the stiffness matrix [8], whose size is n×
n. V = [v1,v2, ...,vn]

T is the vector of control vertices on

the surface. More specifically, the ith row and jth column

element of A, aij , is defined as

aij =

{ ∫
Λ
(∇φi · ∇φj)dΛ i = j or (i, j) ∈ E

0 otherwise
.

(3)

Using finite differences in time, the model can deform

iteratively [2]. (2) is optimized as:

(V (t) − V (t−1))/τ +AV (t) = F ext
V (t−1) , (4)

1We use FEM based 3D deformable models to refer to FEM based 3D

deformable models using a continuous piecewise-linear basis function.
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Figure 2. (a) The internal force f int

i of vi is represented as a sum-

mation of a set of vectors pointing from the vertex to all its neigh-

boring vertices, and (b) the vertex deforms according to the sum-

mation of internal force vector f int

i and external force vector fext

i .

where V (t) is the vector of the model’s vertices at the t-th
iteration, and τ is the time step size. (4) can be written in a

finite differences formulation, as

MV (t) = V (t−1) + τF ext
V (t−1) ,

M = (I + τA).
(5)

Based on the basis function in (1), since each vertex in

the simplex model is only connected to a small number of

vertices, M is a sparse and positive definite matrix. The

solution of (5) can be obtained very efficiently.

2.2. Analysis of the Conventional Internal Force

(4) can be further reformulated according to the internal

and external forces

V (t) = V (t−1) + τ(F int + F ext
V (t−1)), (6)

where

F int = −AV (t), (7)

so the ith element f int
i in F int represents the internal force

on the ith vertex.

The internal force on the ith vertex vi is defined based

on (7)

f int
i = −(aiivi +

∑

(i,j)∈E

aijvj). (8)

Since the stiffness matrix A also has the property

aii +
∑

(i,j)∈E

aij = 0, for any vi ∈ V, (9)

then (8) can be written as

f int
i =

∑

(i,j)∈E

aij(vi − vj). (10)

As shown in Figure 2.(a), the internal force on the ith
vertex, f int

i , is a summation of a set of vectors which are

pointing from the ith vertex to its neighboring vertices.

When applying the deformable model to segment an object,

the control vertex moves according to the summation of its

internal force vector and the external force vector, as shown

in Figure 2.(b). In the final converged result, the summa-

tion of internal and external force vectors of each vertex is

approximately equal to zero.

The internal force vectors of the FEM model keep the

model’s surface smooth and also help it overcome the neg-

ative effects of image noise. However, if the target object

has a complex surface (e.g., the cerebral cortex in Figure 1)

or contains high curvature boundary (e.g., the bottom of the

lung in Figure 6), the internal force vectors might cause the

surface to be over-smoothed and thus have vertices deviate

away from desired object boundaries.

To alleviate this problem, one may decrease the weight

of the internal force to make the external force have more

power in controlling the model’s deformation, by utiliz-

ing an automatic parameter adjustment technique [12] or

by receiving parameter adjustment input from an experi-

enced user. Often, to allow the model to fit the details on

object boundary, parameter adjustment involves lowering

the weight of the internal force and decreasing the model-

deformation step size. However, such adjustment would de-

crease the model mesh’s quality and increase the number of

iterations necessary for the model to converge. A solution to

restore the mesh quality is to adopt Remeshing with Detail

Preserving methods [7], [13]. Remeshing can be applied

to the model mesh after every few iterations. But typical

remeshing techniques are time-consuming. Further, when

the internal force is made weaker, the model may suffer

from a sharp degeneration in mesh quality due to strong ex-

ternal forces pulling the model in different directions as well

as effects of image noise. It is likely that the mesh quality

would become too poor to be recovered, causing difficulty

in remeshing and leading to poor segmentation results.

3. Methodology

We present a new 3D deformable model derived from the

mesh Laplacian, with the objective of achieving efficien-

t detail-preserving segmentation while maintaining high

model-mesh quality.

3.1. The Novel Internal Force

3.1.1 Mesh Laplacian

The new Laplacian-driven parametric deformable model

we propose is still represented as a simplex mesh, but it

has a novel internal force definition derived from the mesh

Laplacian [13]. For the ith vertex vi, the uniformly weight-

ed Laplacian δi is

δi =
∑

(i,j)∈E

vj −wivi =
∑

(i,j)∈E

(vj − vi), (11)



where wi is the number of vertices connected with vi.

Given the number of vertices n, the element lij in the n×
n Laplacian matrix L is represented as

lij =





wi i = j,
−1 (i, j) ∈ E,
0 otherwise.

(12)

In Figure 3.(a), the Laplacian of the ith vertex is shown

as the blue arrow. Serving as the internal force, the Lapla-

cian moves the ith vertex to the centroid of its neighboring

vertices. This procedure can be decomposed into two sub-

steps. Firstly, vi is moved on its tangential plane in favor

of having triangles with equal areas. Secondly, vi is further

moved along its normal direction to reach the centroid. Ac-

cording to these two steps, δi can be decomposed into two

vectors associated with the vertex’s tangential plane, which

are the red vector δtangi on the tangential plane and the green

vector δperpi perpendicular to the tangential plane, as shown

in Figure 3.(b). δtangi has the desired effect of balancing

the areas of neighboring triangles (Figure 3.(c)), and δperpi

moves the vertex along the normal direction which shrinks

the model and makes it a smooth surface. When segmenting

objects with complex surfaces, the above mentioned over-

smoothing problem is caused by δperp. If simply decreas-

ing the influence of the internal force, the weight of δtang

is also reduced, which may severely affect the mesh quality

(Figure 1.(c)). In our method, by decomposing the internal

force into two vectors, the over-smoothing problem can be

solved as keeping the contribution of δtangi and lowering the

influence of δperpi (Figure 1.(a)).

The decomposition of internal forces has been used on

2D parametric deformable contours in [3]. Based on a con-

trol vertex’s tangential vector, the method [3] decomposed

the internal force on the 2D parametric contour into two

parts so as to automatically control the distances between

neighboring vertices and the total number of control ver-

tices. This method can not be extended to 3D, however,

since 3D models have much more complex geometry and

shape representation than 2D models. In 3D, the internal

force vector of a control vertex in the traditional FEM based

deformable model could also be decomposed into two vec-

tors associated with the tangential plane of the vertex. We

did not follow this approach because the stiffness matrix of

the FEM model has the property of reducing the mobility

of vertices [8], thus the internal force vector projected on

the tangential plane vanishes, unable to effectively preserve

mesh quality. Furthermore, the stiffness matrix in an FEM

model needs to be updated after each iteration since it de-

pends on the spatial positions of the connected vertices. In

contrast, the Laplacian matrix used by our model has the

property that its weights do not depend on the vertex posi-

tion, thus the weights only need to be calculated once and

can be precomputed after the model is initialized. There-

fore, we prefer the mesh Laplacian over FEM.

3.1.2 Internal Forces Based on Mesh Laplacian

δprepi in Figure 3.(b) can be calculated based on:

δperpi = (n̂i · δi)n̂i. (13)

where n̂i is the normal of vi. In this paper, we define it as

the average of the normals of the vertex’s adjacent surfaces.

Then δtangi in the tangential plane is

δtangi = δi − δperpi =
∑

(i,j)∈E

vj −wivi − δperpi . (14)

Using (14) as the new internal force and applying finite

differences, the deformation equation for the ith vertex is

v
(t)
i +τ(wiv

(t)
i −

∑

(i,j)∈E

v
(t)
j +(δperpi )

(t)
) = v

(t−1)
i +τfext

i ,

(15)

where τ is the step size, v
(t)
i is the ith vertex’s location at the

t-th iteration. In (15), the unknown parameters are v
(t)
i , v

(t)
j

and (δperpi )
(t)

. Since we use finite differences, we assume

the shape of the model does not change significantly in each

iteration, so we approximate (δperpi )
(t)

with (δperpi )
(t−1)

,

i.e.,

(δperpi )
(t)

= (δperpi )
(t−1)

, (16)

where (δperpi )
(t−1)

can be obtained from the current mesh’s

geometric shape directly. We then have

v
(t)
i +τ(wiv

(t)
i −

∑

(i,j)∈E

v
(t)
j +(δperpi )

(t−1)
) = v

(t−1)
i +τfext

i .

(17)

When the ith vertex moves according to (17), the new

internal force δtangi moves the vertex only on its tangential

plane without shrinking the model, which overcomes the

over-smoothing problem and keeps the mesh quality effec-

tively. However, testing the model on 3D medical images,

we find the model becomes more sensitive to noise. The rea-

son is that the vector perpendicular to the tangential plane

δperp has the property of helping the vertex pass some local

minima caused by noise and stop at strong boundaries. And

δperp also has positive effects on improving mesh quality,

since moving the vertex along its normal direction also re-

duces the areas of its neighboring triangles and make them

more similar to an equilateral triangle. To keep the benefits

of δperp, we adopt a weighting function ω(v) to control its

contribution. The internal force is thus redefined as:

f int
i =

∑

(i,j)∈E

vj −wivi − ω(vi)δ
perp
i . (18)

To define ω(v), we use the vertex’s neighboring trian-

gle’s radius ratio ǫ [14], which is mapped to [0, 1] as

ǫ = 2
rins
Rcir

, (19)
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Figure 3. Illustration of the novel internal force. (a) The internal force vector of the vertex is shown in the neighboring triangles, (b) given

the vertex’s normal direction, the internal force vector can be decomposed into two vectors according to the vertex’s tangential plane, and

(c) vi moves on the tangential plane in favor of having triangles with equal areas.

where rins and Rcir are the radii of the inscribed and cir-

cumscribed circles of the triangle. ǫ = 1 indicates a well

shaped equilateral triangle and ǫ = 0 means a degenerated

triangle. The radius ratio of the ith vertex r(vi) is defined

as the average radius ratio of all its neighboring triangles.

A high r(v) means the vertex’s neighboring triangles are in

good shape and ω(v) is set as close as possible to 1. Then

the internal force vector can be mapped onto the tangential

plane to make sure the vertex deforms without shrinking.

Once r(v) decreases because of noise or some other factors,

we assign ω(v) a relatively small value. Then δperp is par-

tially preserved to reduce the effect of noise and to restore

the neighboring triangles of the vertex to a good shape.

In this paper, we introduce two ways to set ω(v) based

on the radius ratio. We first define ω(v) as a Fermi function

(sigmoidal), which is

ω(v) =
1

1 + e−s(r(v)−µ)
, (20)

where s is the steepness, and µ controls the overall mesh

quality level. s and µ are empirically set as 20 and 0.7.

Secondly, taking the relative frequency of radius ratio

into account, we adopt its cumulative density function (CD-

F) to map from r(v) to weight [0, 1]. In this way, the

weighting function is defined as a normalized discrete sum-

mation over r(v) for all the vertices:

ω(vi) =
∑

vk∈V

cik,

cik =

{ 1
|V| r(vk) ≤ r(vi)

0 r(vk) > r(vi)
. (21)

Based on our experience, (20) is more suitable to segmen-

t objects with high curvature boundaries and (21) is more

suitable to segment objects with complex surfaces.

Compared with (14), (18) has a weighting function rang-

ing from 0 to 1, which is used to control the contribution

of δperp in Figure 3. Considering all the control vertices,

the linear system for the new deformable model is defined

based on (14) as

M
′

[
V (t)

D(t)

]
=

[
V (t−1)

D(t−1)

]
+ τ

[
F ext
V (t−1)

0

]
,

M
′

=

[
M00 M01

0 M11

]
= (I + τ

[
L00 L01

0 0

]
),

(22)

where L00 is the n × n Laplacian matrix in (12), L01 is a

n× n diagonal matrix derived from the weighting function

ω(v) to control the weights of δperp. D(t) and D(t−1) are

the n × 1 vectors encoding δperp of all the vertices at time

t and t − 1 respectively. M11 is the identity matrix of size

n. The size of M
′

is 2n× 2n, and it is very sparse. Solving

(22) is still very efficient. In 3D, (22) is solved three times,

for the x, y and z components separately.

4. Experiments

In this section, we show experiments that test our new

model. We also compare its performance with several oth-

er deformable models: an FEM model (Section 2.1) with

normal or weak internal forces, and two level set based

algorithms—Active Contour Without Edges (ACWE) [1]

and Distance Regularized Level Set Evolution (DRLSE)

[6]. During comparison, all models use the same initializa-

tion. The test datasets include a 3D volume of a synthetic

object whose boundary has high curvature regions (Figure

4), a 3D simulated MRI brain image from BrainWeb (Fig-

ure 1), and 10 human lung volumetric datasets from the NCI

Lung Image Database Consortium (LIDC) (Figure 6). The

parameter settings for the various models and the models’

performance measures are summarized in Table 1.

4.1. Experimental Setup

On the 3D synthetic dataset and the lung datasets, we

compared our model with the FEM model. Both models are

initialized in the same way, i.e., spheres or ellipsoids near

the object with user-specified radii. To segment the cerebral

cortex from the MRI brain image, we compared our model



with the FEM model with normal internal forces, the FEM

model with weakened internal forces, and the two level set

based algorithms ACWE and DRLSE; all models use the

same initialization which is the pre-segmented brain White

Matter obtained by [20]. For our proposed parametric de-

formable model with Laplacian-driven internal forces, we

used (20) to control the weight of δperp when segmenting

the synthetic object and human lungs, and used (21) for seg-

mentation of the brain cerebral cortex.

To focus on evaluating only the performance of the new

Laplacian-driven internal force, in the experiments, we used

the same external force to deform our model and the FEM

based model. Similar to T-Snakes [11], the external force is

set according to the intensity values and the vertices’ nor-

mals. For the ith vertex, it is

fext
i =

{
γn̂i I(vi) ≥ T,
−γn̂i otherwise,

(23)

where n̂i is the normal of the vertex, I(vi) denotes the in-

tensity value of the ith vertex, and T is the mean intensity

value of the image volume.

The settings of step size τ and the weight of external

force γ for our model and the FEM models are shown in

Table 1. Note that our model did not need parameter tuning

and used the same parameter setting for all experiments. In

contrast, the FEM model needs different parameter settings

for different segmentation tasks, and in the experiments,

we manually set the FEM model’ parameters to enable it

to grow as much as possible under the influence of strong

external forces toward object boundary. The convergence

criterion for our model and the FEM model is defined based

on the model vertices’ movements: we assume the model

reaches the final converged result if all the vertices move

less than a maximum of two voxels in a certain iteration.

For the two level set methods used in Figure 1.(d)–(e), we

empirically set their parameters to make the models achieve

their best segmentation results.

To illustrate the models’ performance, we calculated the

Dice Similarity Coefficient (DSC) [15] values to measure

the segmentation accuracy and used the radius ratio of mesh

triangles to measure the mesh quality, see Table 1.

4.2. Experimental Results

Figure 4 shows segmentation results on the 3D synthetic

dataset. From the final results viewed in 3D and 2D cross-

sectional planes, one can clearly see that our model pre-

cisely found the object boundary but the conventional FEM

based model generated a smooth surface that did not fit well

at corners on the boundary. The mean radius ratio values of

the resulting boundary surface meshes by our model and the

FEM model are 98.87% and 97.91%, respectively.

Figure 1 compares the cerebral cortex segmentation re-

sults using our method, the FEM model with normal inter-

nal forces, the FEM model with weakened internal forces,

(a)

(1)

(2)

(b) (c)
Figure 4. Segmentation results on a 3D synthetic dataset. (a) Vol-

ume rendering of the dataset, (b) the segmentation results viewed

in 3D, (c) the segmentation results viewed in 2D cross-sectional

planes, (1) the result of our method, and (2) the result of the FEM

based method.

1
0

1

(a) (b) (c) (d)
Figure 5. Visualization of mesh quality evaluation by color-

mapping the result meshes’ radius ratio values using the cumu-

lative density function of the result in Figure 1.(c). (a) Result of

our method in Figure 1.(a), (b) result of the FEM model with nor-

mal smoothness constraints in Figure 1.(b), (c) result of the FEM

model with weakened smoothness constraints in Figure 1.(c), and

(d) the color bar.

the ACWE and DRLSE. For our model and the FEM mod-

els, the initialization is the iso-surface mesh reconstructed

from the pre-segmented White Matter; for the two level set

methods, the initialization is the signed distance transform

of the White Matter. Our result is shown in Figure 1.(a), and

has the highest mean radius ratio value 92.3%. In Figure

1.(b)–(c), FEM based models either became too smooth or

had low mesh quality. The mean radius ratio values of Fig-

ure 1.(b)–(c) are 89.1% and 83.4%. With a relatively weak

internal force, the FEM model had to adopt a small step

size to deform, which increased the running time as shown

in Table 1. In Figure 1.(d)–(e), a post-processing surface

reconstruction step was necessary to obtain the boundary

surface from level set’s volumetric segmentation result, and

the reconstructed surface has low mesh quality, affecting ac-

curacy and visualization. The mean radius ratio values of

Figure 1.(d)–(f) are 77.4% and 77.9%.

In Figure 5, we visualize the mesh quality comparison

results of Figure 1.(a)–(c) by color-mapping the mesh tri-

angles’ radius ratios using the cumulative density function

(CDF) defined in (21). Here we adopt the CDF of the mesh



Table 1. Parameter settings and quantitative evaluation of our method and other methods.

Synthetic Data Human Lung Human Brain

Ours FEM Ours FEM Ours Fig. 1.(b) Fig. 1.(c) Fig. 1.(d) Fig. 1.(e)

τ (step size) 0.8 0.5 0.8 0.4 0.8 0.6 0.1 n/a n/a

γ (weight of external force) 1 2 -1 -1.8 1 1.5 2 n/a n/a

DSC 99.2% 95.3% 96.3% 93.2% 95.5% 88.7% 93.6% 94.6% 93.8%

Iterations 63 68 58 68 45 48 90 32 26

Running Time 79.4s 54.4s 70.1s 61.88s 43.4s 31.3s 71.6s 52.2s 39.6s
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(a) (b)
Figure 7. DSC and mesh quality (radius ratio) evaluation of the

segmentation results in Figure 6.(a). (a) DSC results of different

axial slices, (b) the vertices’ radius ratio distribution, (1) radius

ratio distribution of our method, and (2) radius ratio distribution

of the FEM based method. The left and right lungs extend from

the 53rd slice to the 314th slice.

in Figure 1.(c). Our result contains the most red regions,

indicating it has the best mesh quality.

We also evaluated our method on 10 human lung dataset-

s and show 4 of them in Figure 6. From the DSC values

shown in Table 1, our model produced a noticeable im-

provement in accuracy compared to the FEM model. In Fig-

ure 7, we plotted the DSC value in each axial slice (0 means

there is no segmentation result in that slice) and showed

the distribution of the model vertices’ radius ratio from the

dataset in Figure 6.(a). Since the objects extend from the

53rd slice to the 314th slice, from the figure we can see that

our method correctly recovered the objects with high DSC

value in each slice, while the FEM model missed parts of

the objects in the top and bottom slices. Both our mod-

el and the FEM model produced high-quality 3D surface

meshes, with mean radius ratio values above 97%. To fur-

ther demonstrate the results, we show 4 sets of comparison

results from different cross-sectional planes in Figure 8.

5. Conclusion and Future Work

In this paper, we proposed a new 3D Laplacian-driven

deformable model based on mesh Laplacian aiming to seg-

ment with better accuracy objects that have complex sur-

faces or high curvature boundaries. The main contributions

include: (1) decomposing the internal force of each vertex

into two vectors according to the vertex’s tangential plane,

the 3D parametric deformable model’s internal force can be

considered as consisting of two separated parts; (2) main-

taining the vector projected onto the tangential plane and

using a mesh-geometry based weighting function to control

the contribution of the vector perpendicular to the tangential

plane, the model can thus be used to segment objects with

complex surface or high curvature regions, while preserving

the mesh quality; (3) deforming the new model is equivalent

to getting the solution of a linear system, which is very effi-

cient. Testing the new model on 3D synthetic, human lung

and brain datasets and comparing with other parametric and

geometric deformable models, our model achieved better

performance with little sensitivity to parameter settings.
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