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ABSTRACT

Cervical cancer is the third most common type of cancer in
women worldwide. Most death cases of cervical cancer oc-
cur in less developed areas of the world. In this work, we
develop an automated and low-cost method that is applica-
ble in those low-resource regions. First, we propose a more
distinctive multi-feature descriptor for encoding the cervical
image information by enhancing an existing descriptor with
the pyramid histogram of local binary pattern (PLBP) feature.
Second, we apply the AdaBoost algorithm to perform feature
selection, and train a binary classifier to differentiate high-risk
patient visits from low-risk patient visits. Our AdaBoost clas-
sifier can be adjusted to achieve high specificity, which is nec-
essary for use in clinical practice. Experiments on both bal-
anced and imbalanced datasets are conducted to evaluate the
effectiveness of our method. Our method is shown to achieve
better performance than existing image-based CIN classifica-
tion systems and also outperform human interpretations on
various screening tests.

Index Terms— Cervical Cancer Screening, Computer
Aided Diagnosis, Image Classification, AdaBoost, Pyramid
Histograms, Local Binary Patterns

1. INTRODUCTION
Cervical cancer ranks as the second most common type of
cancer in women aged 15 to 44 years worldwide [1]. Among
death cases caused by cervical cancer, over 80% occurred in
less developed regions. Therefore, there is a need for lower
cost and more automated screening methods for early detec-
tion of cervical cancer [2], especially those applicable in low-
resource regions.

Screening procedures prevent cervical cancer by detecting
cervical intraepithelial neoplasia (CIN), which is the poten-
tially precancerous changes and abnormal growths of squa-
mous cells on the surface of the cervix. According to WHO
system [1], CIN is divided into three grades: CIN1 (mild),
CIN2 (moderate), and CIN3 (severe). In clinical practice, one
of the most important goals of screening is to differentiate
CIN1 from CIN2/3 or cancer (denoted as CIN2/3+ [3, 4]).
The reason is that the lesions in CIN2/3+ require treatment,
whereas mild dysplasia in CIN1 only needs conservative ob-
servation because it will typically be cleared by an immune
response in a year.

The most widely used cervical cancer screening and diag-
nostic methods include Pap tests, HPV tests, Colposcopy, and
Digital Cervicography. Pap tests are effective, but suffer from
low sensitivity in detecting CIN 2/3+ [5]. Moreover, Pap tests
need a laboratory and trained personnel to evaluate the sam-
ples. The sensitivity of HPV tests in detecting CIN 2/3+ le-
sions varies greatly [5]. Colposcopy is a diagnostic procedure
that often involves setting a biopsy. Digital Cervicography is
a non-invasive and low cost visual examination method which
is widely accessible in resource-poor regions. It is performed
by taking a photograph of the cervix (called a cervigram) after
applying 5% acetic acid to the cervix epithelium. As summa-
rized in a recent review article [6], the conventional cervical
screening methods are highly dependent on the skill of the
experts whose judgment may be subjective and often leads
to considerable variability. Furthermore, there are far more
patients than expert physicians, resulting in long queues for
the screening process. Also, in developing areas of the world,
patients cannot gain access to some screening tests. To over-
come these problems, computational, efficient and low-cost
adjunctive tools are needed for cervical cancer diagnosis.

In this paper, we present a machine learning based method
to differentiate CIN1/normal from CIN2/3+ using cervigram
images obtained during a visit of the patient. In our experi-
ments, we apply our method on both balanced and imbalanced
datasets to evaluate its robustness. We encode the cervigram
information into a multi-feature descriptor which combines
three types of complementary features: the pyramid his-
togram of oriented gradients (PHOG) [7], the pyramid color
histogram in L*A*B space (PLAB) and the pyramid his-
togram of local binary pattern (PLBP). In this multi-feature
descriptor, PHOG encodes edges and gradient information,
PLAB captures color information and PLBP extracts texture
information. Compared with only using PLAB and PHOG
features [3, 4], the proposed multi-feature descriptor achieves
better performance by adding PLBP, e.g., it improves the
sensitivity from 74% to 86% at 70% specificity on the im-
balanced dataset. But for computer-aided interpretation of
cervigrams to be useful in clinical practice, it is important to
develop methodologies that can achieve a specificity around
90% and a sensitivity as high as possible. Thus, we introduce
a factor in the AdaBoost learning algorithm to control the
trade-off between sensitivity and specificity of the classifier.
The proposed adjustable AdaBoost algorithm is used to select



discriminative features and train classifiers. Compared with
the support vector machine (SVM) classifier [3], this algo-
rithm achieves higher sensitivities by using fewer attributes
especially at the high specificity region, e.g., AdaBoost clas-
sifier increases the sensitivity by 8% at 90% specificity on the
balanced dataset. Moreover, the experimental results illus-
trate that the proposed automated algorithm achieves a much
higher sensitivity than the human interpretations on various
screening tests, including Cervicography, Pap, and HPV tests.

2. RELATED WORKS

Several computer-assisted Pap tests have been approved by
United States Food and Drug Administration (USFDA), such
as ThinPrep Imaging System (TIS) [8] and FocalPoint [9].
These methods were shown to be statistically more sensitive
than manual methods with equivalent specificity. Encouraged
by these developments, a data-driven algorithm [3] was de-
veloped for automated cancer diagnosis via analyzing cervi-
grams. Compared with Pap tests [8, 9], cervigrams are images
captured by the non-invasive and low cost digital cervicogra-
phy. The method by Kim et al. [3] utilized a linear support
vector machine (L-SVM) to learn image features and classify
cervigrams into CIN1/normal or CIN2/3+. To further improve
the classification performance, Song et al. [4] combined the
cervigram information with other clinical test results such as
Pap and HPV. However, these other clinical tests require ad-
ditional resources that may not be available in resource poor
areas of the world.

The choice of feature descriptors is one of the most impor-
tant factors for image segmentation and classification. Several
types of features [3, 4, 10–12] have been proposed to encode
cervigram information. Li et al. [10] identified acetowhite
regions by analyzing local color features. Zimmerman et al.
[11] detected specularities in cervigrams by utilizing image
intensity, saturation, and gradient information. In the work
by Ji et al. [12], texture features were used to recognize
important vascular patterns in cervigrams. In [3, 4], the au-
thors combined the pyramid histogram of oriented gradients
(PHOG) and the pyramid color histogram in L*A*B space
(PLAB) features to perform region of interest (ROI) segmen-
tation and CIN classification.

In addition to feature descriptors, classifiers also have
great influence on the performance of a machine-learning
based classification method. Neural networks, support vector
machines (SVM), nearest neighbors (KNN), linear discrimi-
nant analysis (LDA), and decision trees are commonly used
for studying cervical cancer [6]. Kim et al. [3] applied a linear
SVM to classify cervigrams into CIN1/normal or CIN2/3+,
while Song et al. [4] utilized KNN coupled with a majority
voting algorithm to perform the CIN classification. Zhang et
al. [13] proposed a discriminative sparse representation for
tissue classification in cervigrams. In the work by Lee et al.
[14], the authors developed a system which integrates multi-
ple classifiers including neural network classifiers, statistical
binary decision tree classifiers, and a hybrid classifier.

3. METHODOLOGY
Fig.1 illustrates the CIN classifier training procedure. First,
we isolate the cervix region of interest (ROI) from the input
image and resize it to the uniform 300*250 pixels. We use the
method proposed in [3] to segment the ROI since segmenta-
tion is not the focus of this paper. Second, we transform the
ROI image patch into different types of feature maps, includ-
ing the local binary pattern (LBP) map, L*A*B color chan-
nels, and the image gradient maps. Third, a spatial pyramid
of sub-regions is constructed for each feature map. Based on
these constructed pyramids, PLBP, PLAB and PHOG features
are extracted and concatenated to be a multi-feature descrip-
tor. Finally, the adjustable AdaBoost algorithm is applied to
select discriminative attributes and train a CIN classifier on
the multi-feature descriptor.

3.1. Image to Feature Map Transformation
Color and Image Gradient. Color plays an important role
in cervical lesion classification, because one of the most im-
portant visual features on the cervix that have relevant diag-
nostic properties is the presence of Acetowhitened regions.
Thus, the color feature is widely used in cervigram analysis
[3, 4, 13]. We calculate the L*A*B color channels as our
color feature maps. Then, to capture edge and shape infor-
mation on a cervix, we calculate the gradient map, which is
shown to be complementary to the color feature [3, 4].
Texture. In addition to the color and gradient features, we in-
troduce a new local binary pattern (LBP) feature that extracts
local texture characteristics for cervical lesion classification.
Ojala et al. [15] first introduced LBP and showed its powerful
ability for texture classification. In a local neighborhood of an
input image, given a pixel (xc, yc) which is surrounded by 8
neighbors, we can calculate its LBP value by Eq. (1),

LBP (xc, yc) =

7∑
p=0

s(ip − ic)2p (1)

Where ic indicates the grayscale value of the center pixel
(xc, yc); ip corresponds to the grayscale value of the pth
neighbor. s(x) is a sign function where s(x) = 1, if x ≥
0; else, s(x) = 0.

Later, several extensions of the original LBP operator
were presented [16]. First, the LBP was extended to a cir-
cular neighborhood of different radii, notated as LBPP,R

which refers to P equally spaced pixels on a circle of radius
R. Furthermore, the rotation invariant local binary pattern is
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defined in Eq. (2),

LBP ri
P,R = min

i
ROR(LBPP,R, i), i = 0, ..., P − 1 (2)

Where ROR(LBPP,R, i) performs a circular bitwise right
shift on the P-bit LBPP,R, for i number of times.

By replacing the intensity value ic of each pixel (xc, yc)
in the input image with the LBP ri

P,R value, we can obtain the
LBP map. The pixels on the boundary of the input image do
not correspond to any LBP values, thus we need to set the
values of those pixels to be zeros or to be the values of their
closest neighbors that have LBP values.

In this paper, we useLBP ri
8,1. There is no need to use LBP

with other radii because our pyramid histogram LBP feature
(PLBP) can encode a multi-scale local binary pattern.

3.2. Pyramid Feature Extraction
As Fig.1 shows, we need to construct a spatial pyramid for
each feature map. A pyramid is constructed by splitting the
image into rectangular sub-regions, increasing the number of
regions at each level, i.e., level 0 has 1 sub-region; level 1
has 4 sub-regions; level 2 has 16 sub-regions, and so forth.
Histogram features are extracted within these pyramid sub-
regions. The extracted pyramid histogram encodes the statis-
tical distribution of feature values at different positions and
scales in cervigrams.

For the PLBP feature, the total number of bins is 10 for
the histogram of a subregion. A 4-level of pyramid is con-
structed resulting in a PLBP histogram feature that has 850
dimensions. For the PLAB feature, we extract 3 pyramid lev-
els with a 16-bin histogram for each channel in L*A*B color
space in each subregion. Thus, the PLAB color feature has
1,008 dimensions. In the gradient map, we calculate pyramid
histogram of oriented gradients (PHOG). An 8-bin orientation
histogram over 4 levels is used. Hence, the total vector size
of our PHOG feature is 680. Finally, we construct a multi-
feature descriptor by concatenating the three different types
of features, PLBP-PLAB-PHOG. Thus, this multi-feature de-
scriptor has a vector size of 2,538.

3.3. Adjustable AdaBoost Classifier
Boosted decision trees are frequently used to select a discrim-
inative feature subset from a feature pool and train a clas-
sifier. In this paper, we utilize a quickly boosting learning
algorithm [17] to train an AdaBoost classifier on our PLBP-
PLAB-PHOG feature descriptor.

A boosted classifier has the form H(x) =
∑

t αtht(x),
which can be trained by greedily minimizing the loss function
and selecting the weight scalar αt and optimal weak classifier
ht at each training iteration t. We use shallow decision trees
(i.e. stumps) as the weak learners. The decision tree ht(x)
is composed of a stump at every non-leaf node. A stump is
trained on a single feature and determines an optimal thresh-
old on this feature’s value that minimizes the loss function
using this feature. In the t-th iteration, among all stumps, the
stump that gives minimum error is continuously selected to

construct the weak classifier ht(x). In the final strong classi-
fier H(x), the weight of weak classifier ht(x) is αt, which is
inversely proportional to the classification error of ht(x).

In this paper, since we classify each patient visit and there
are often multiple images taken during a visit, the final classi-
fication label of a visit is determined by considering the clas-
sification results on all images of this visit. Let x1, ..., xm be
the multi-feature descriptors for m images of a patient visit.
The final label of this patient visit is determined by Eq. (3),

L(x) = sign(

m∑
i=1

T∑
t=1

αtht(xm)− δ) (3)

Here, we introduce a factor δ to control the trade-off between
sensitivity and specificity of the final classifier. δ ∈ [0, A],
with default value A

2 , where A = m
∑
αt. By increasing

δ, the classifier achieves higher specificity with lower sensi-
tivity. We add this factor here because in clinical practice, it
is often desired to ensure the specificity of a screening test
above 90% while achieving a sensitivity as high as possible.

4. EXPERIMENTS
We carry out our experiments using data from a database col-
lected by the NCI (National Cancer Institute) in the Gua-
nacaste project [18]. Cervigrams and other clinical informa-
tion of 10,000 anonymized women are available. Since our
goal is to perform visit level CIN classification based on im-
age information, the ground truth used for validation is the
worst histology of each patient visit, obtained from micro-
scopic evaluation of tissue samples taken during biopsy. Since
the Guanacaste project was a population-based study of cer-
vical neoplasia, a large number of women who were screened
were healthy. From the database [18], we select 1,112 patient
visits which have worst histology ground truth information.
Among these, 767 visits are in the CIN1/normal category and
345 visits are in the CIN2/3+ category. For our experiments,
we construct two datasets. Dimb contains all 1,112 patient
visits; it is an imbalanced dataset with an imbalance ratio of
2.22:1 (negative:positive). Meanwhile, in order to compare
our method with existing methods which reported results only
on balanced datasets [3, 4], we construct a balanced dataset
Db by using all 345 CIN2/3+ visits and 345 randomly se-
lected CIN1/normal visits.

We perform a ten-round ten-fold cross validation on both
Db and Dimb datasets to evaluate the sensitivity and speci-
ficity of our method. We randomly divide the visits in each
dataset into ten folds. In the ten rounds, we rotationally use
one fold for testing, one fold for validation and the remaining
eight folds for training. We report the average result of the
ten rounds. In our AdaBoost learning algorithm, the only pa-
rameter (the number of weak classifiers) can be automatically
learned by optimizing the GMean on the validation set, where
GMean =

√
sensitivity ∗ specificity. In the testing pro-

cess, by changing δ, we can draw ROC curves for AdaBoost
classifiers trained on different features. As the baseline for
comparison, we use the source code of the method proposed
in paper [3] received from its authors. For fair comparison,



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1−Specificity

S
en

si
tiv

ity

 

 

PLAB−PHOG(balanced,Ada)
PLBP−PLAB−PHOG
PLAB−PHOG(imbalanced,Ada)
PLBP−PLAB−PHOG

Fig. 2. Comparison of AdaBoost Classifiers trained on PLBP-PLAB-
PHOG and PLAB-PHOG feature descriptors. (Bold dash lines show results
on balanced dataset; Thin solid lines show results on imbalanced dataset; Red
lines are results based on PLAB-HOG (baseline); Blue lines are results based
on PLBP-PLAB-PHOG.)

we train and test their method on our datasets under the same
condition as our method. We also compare our result with hu-
man interpretations on several other screening tests, obtained
for the same visits that are used to construct our datasets.

4.1. PLBP-PLAB-PHOG Feature vs. PLAB-PHOG

In this experiment, we evaluate the performance of our PLBP-
PLAB-PHOG feature descriptor by comparing it with the
baseline feature PLAB-PHOG [3, 4] on both balanced and
imbalanced datasets. In Fig. 2, we report results in ROC
curves produced by the adjustable Adaboost classifier trained
on different features. The δ factor in Eq. (3) is varied from
−0.12 to 0.08 to generate data points on the ROC curves.
As Fig. 2 shows, the PLBP-PLAB-PHOG feature (blue
lines) outperforms PLAB-PHOG (red lines) on both datasets,
which demonstrates that adding PLBP makes a better feature
descriptor for cervigram images. On the balanced dataset,
our PLBP-PLAB-PHOG increases the sensitivity from about
38% to 42% at 90% specificity. Furthermore, on the balanced
dataset the best accuracy of PLBP-PLAB-PHOG feature is
80.30% achieved at 86.39% sensitivity and 74.21% speci-
ficity, while the best accuracy of PLAB-PHOG is 76.10%.

4.2. Adjustable AdaBoost Classifier vs. SVM

To illustrate the performance improvement by our adjustable
AdaBoost classifier, we compare it with an SVM classifier.
Both types of classifiers are trained on the same dataset based
on PLBP-PLAB-PHOG feature. As Fig. 3 illustrates, the
overall result of AdaBoost and SVM classifiers are very close
on the imbalanced dataset. However, at high specificity Ad-
aBoost achieves higher sensitivity on both datasets. For in-
stance, AdaBoost improves the sensitivity from about 34% to
42% at 90% specificity in comparison to SVM on the bal-
anced dataset. Also, the overall improvement on the balanced
dataset is obvious. Hence our AdaBoost classifier performs
better than SVM, especially in a clinical practice scenario
where a specificity of 90% or above is generally required.
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Table 1. Comparing the sensitivity (Sensi) and Specificity (Speci) of our
proposed AdaBoost classifier trained on PLBP-PLAB-PHOG feature with
that of human interpretation (HI) on Pap and HPV tests.

Method Sensi(%) Speci(%) Sensi(%) Speci(%)

HI-Cervigram 21.74 93.04 21.74 94.52
HI-Alfaro ThinPrep 20.69 81.82 20.69 85.27
HI-Cytyc ThinPrep 49.55 88.46 49.55 89.77
HI-Costa Rica Pap 39.42 88.12 39.42 89.31
HI-Hopkins Pap 36.00 97.11 36.00 97.13
HI-HPV16 33.82 94.19 33.82 92.94
HI-HPV18 08.16 97.97 08.16 98.17

Proposed 42.00 90.00 44.40 88.37

4.3. Proposed Classifier vs. Human Interpretation
As illustrated in Table 1, on the balanced dataset the Ad-
aBoost classifier trained on PLBP-PLAB-PHOG feature
outperforms human interpretations on ThinPrep and Costa
Rica Pap tests at the specificity level around 90%. When
compared to all other tests except Cytyc ThinPrep, the Ad-
aBoost classifier achieves lower specificity, but its sensitivity
is much higher. Furthermore, our AdaBoost classifier is able
to achieve an even better overall accuracy regardless the con-
sideration of high specificity. For example, we can achieve
the best accuracy of 80.30% with 86.39% sensitivity and
74.21% specificity on the balanced dataset. For further com-
parison, in [13] the best reported result is 71.15% sensitivity
with 81.67% specificity. Therefore, we conclude that our
AdaBoost classifier trained on PLBP-PLAB-PHOG feature
can perform comparably or better than human interpretation
and some state-of-the-art automated methods [3, 13].

5. CONCLUSION
We present an adjustable AdaBooast classifier for CIN classi-
fication of patient visits using image information only. More-
over, a multi-feature descriptor, PLBP-PLAB-PHOG, is de-
signed to encode the color, edge, shape and texture informa-
tion in cervigrams. Experiments on both balanced and imbal-
anced datasets are conducted to evaluate the effectiveness of
our method. Compared with the PLAB-PHOG feature used
in [3, 4], our PLBP-PLAB-PHOG feature achieves much bet-



ter result. Also, our AdaBoost classifier trained on PLBP-
PLAB-PHOG feature outperforms human interpretations on
various screening tests and some state-of-the-art computer as-
sisted cervigram analysis approaches [3, 13].
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