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Abstract. In recent years, deep neural networks (DNNs) have had great
success in machine learning and pattern recognition. It has been shown
that these networks can match or exceed human-level performance in
difficult image recognition tasks. However, recent research has raised a
number of critical questions about the robustness and stability of these
deep learning architectures. Specifically, it has been shown that they are
prone to adversarial attacks, i.e. perturbations added to input images to
fool the classifier, and furthermore, trained models can be highly unstable
to hyperparameter changes. In this work, we craft a series of experiments
with multiple deep learning architectures, varying adversarial attacks,
and different class attribution methods on the CIFAR-10 dataset in order
to study the effect of sparse regularization to the robustness (accuracy
and stability), in deep neural networks. Our results both qualitatively
show and empirically quantify the amount of protection and stability
sparse representations lend to machine learning robustness in the context
of adversarial examples and class attribution.
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1 Introduction

In recent decades, advances in deep neural networks (DNN) have allowed com-
puters to achieve or even exceed human-level performance on difficult image
recognition tasks. DNNs are widely used today in several critical fields, such
as bio-authentication systems, facial recognition, autonomous vehicles, malware
detection, and spam filtering. These DNNs, and other machine learning models,
typically maximize or minimize some objective function while enforcing some
regularization in the training process.

Regularization in machine learning (ML) offers many benefits when optimiz-
ing an algorithm. Regularization induces sparsity on the activations and param-
eters of the system, improving generalizability and interpretability [7]. Math-
ematically, the form of regularization we investigate constrains the coefficients
of the system, driving the estimates towards zero. This technique is known to
discourage the learning of complex models, reduce the flexibility of the model,
increase sparsity, and avoid overfitting to the training data.
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However, in the context of robust machine learning, the impact of regular-
ization has not been thoroughly explored. We hypothesize that regularization
increases robustness in non-traditional ways. If we define robust ML as the abil-
ity of an algorithm to be consistent across training and testing, the overfitting
properties of regularization are important. If we further define robust ML as
the ability of the algorithm to maintain a stable performance after the addition
of noise to the dataset, the generalizability of regularization will help. In this
work, we explore robustness with respect towards two major unsolved research
questions in deep learning, i.e. robustness of deep learning to adversarial ex-
amples, and to interpretation via classification attribution. Specifically, we ask
the question, does sparse regularization improve the robustness against different
adversarial examples? Does the introduction of sparse regularization maintain
deep neural network models’ attribution consistent across parameterizations?

2 Background

We will mathematically define a regularization term (or regularizer) R(f) as the
following term added to a loss function,

min
f

N∑
i=1

V (f(xi), yi) + λR(f) (1)

Where V is a loss function that quantifies the cost of predicting f(x) when the
label or ground truth is y, and where N is the size of the training set and i
refers to a single sample. The λ term is a hyperparameter that controls the
weight of the regularizer. A more flexible model would be allowed to increase
the magnitude of its coefficients, while a more constrained model would have a
larger value of λ and thus have smaller valued coefficients.

If we define f(x) = x · w, i.e. the approximation of y as characterized by
an unknown vector of parameters (weights), w, we can then define R(f) as
||w||22 for the case of L2 regularization e.g. Ridge regression, ||w||1 in the case of
L1 regularization e.g. Lasso, and (α||w||1 + (1 − α)||w||22), α ∈ [0, 1] for Elastic
Net. The L2 penalizes large values of w, while the L1 norm drives some of the
coefficients exactly to zero, enforcing sparsity.

2.1 Related Work in Adversarial Attacks

Although state-of-the-art deep neural networks have achieved high recognition
for various image classification tasks, the architectures used for these tasks
have been shown to be unstable to small, well-sought, perturbations of images.
Szegedy et al. [16] showed that adversarial examples on ImageNet were so minute
and fine-grained that they were indistinguishable to the human eye and could
generalize across many different architectures on different folds of the dataset.
Thus, the architectures can be seen more as “memorizing” a mapping from the



Regularization and Sparsity for Robustness and Attribution 3

images to a text classification as opposed to understanding the underlying mean-
ing and generalizing concepts across different images. Furthermore, deep learning
classification has a tendency to learn surface regularities in the data, and not
truly learn the abstract concepts of classes and objects [8].

Current attacks that have been studied in the field, such as those of [2]
and [12] have been studied as proof-of-concepts, where adversarial attackers are
assumed to have full knowledge of the classifier (e.g. model, architecture, model
weights, parameters, training and testing datasets). The strongest attack in the
literature at the time of writing this article is Carlini’s attack based on the L2
norm, and it is a white-box attack requiring full knowledge of the model. Much
of this research has been interested in developing the most effective attacks
possible, to be used as standards against which to test the robustness of image
classifier DNNs. With less knowledge of the classifier model, the effectiveness of
the attack decreases.

2.2 Related Work in Image Attribution

Image attribution is the concept of determining what parts of the image con-
tribute to the classification, and how important are these parts of the image to
the end result. Most attribution methods work by either perturbing the input
signal in some way and observing the change in the output, or by backtracking
the influence of the input via a modification of backpropagation. The use of
backpropogation only requires a single forward and backwards pass through the
model, and are thus efficient to compute [3]. The perturbation-based methods do
not require access to the model, and thus can be leveraged on black-box models.

We can visualize the attribution which provide insight into the classifier de-
cision. These visualizations have been used to characterize which parts of an
input are most responsible for the output. This lends some interpretability to
the model, and can be used to explain the prediction result. We propose the ro-
bustness of the attribution methods can be measured by quantifying the change
in attribution when choosing different hyperparameters for the model, or altering
the type and scale of perturbation to the input image [1].

3 Methodology

In this section, we describe the different deep learning architectures, the adver-
sarial attacks, and attribution techniques used to evaluate our hypothesis on
regularization and sparsity on robust machine learning.

3.1 Image Classification Architectures

ResNet [5] -It is becoming more popular and common in the machine learn-
ing community to increase the depth of deep learning architectures to improve
accuracy and generalizability. However, as the network increases in depth, the
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performance may begin to drop due to the vanishing gradient problem. More-
over, accuracy gets saturated and degrades rapidly resulting in the problem of
degradation when the depth of a network increases. ResNet introduces a solution
by construction to the deeper model and adding layers of identity shortcuts. The
concept of an identity shortcut connection is that it can skip one or more layers
performing identity mappings. They show it is easier to optimize the residual
mapping than to optimize the original, unreferenced mapping. The intuition for
this architecture is that the deep residual learning framework of a few stacked
layers fitting an underlying mapping can be explicitly fit by a residual mapping.

MobileNet [6] - There have been various computer vision models proposed
with a convolutional neural network (CNN) architecture for the task of image
classification. In the field of utilizing computer vision models in mobile and
embedded vision applications results in either the compression of pre-trained
networks or to train small networks. On the other hand, MobileNet is Google’s
“mobile-first” computer vision model for TensorFlow that maximizes accuracy
while utilizing limited resources. One of the novel contributions in MobileNet is
leveraging a Depthwise Separable Convolution within its architecture, a depth-
wise convolution followed by a pointwise convolution where a depthwise convolu-
tion is the channel-wise Dk×Dk spatial convolution and a pointwise convolution
is the 1 × 1 convolution to change the dimension. This unique convolution re-
duces the amount of operations to be computed significantly while only losing
1% in accuracy.

VGG16 [15] - VGG-16 is a deep convolutional neural network that was adapted
from AlexNet [9] in which it replaces the large kernels with multiple, smaller
3 × 3 kernel filters. The introduction of this model showed the advantages of
adding depth complexity to convolutional neural networks in order to improve
its accuracy and resulted in significant improvements to prior deep learning
models. VGG is broken up into 5 groups, each with a convolutional layer followed
by a max-pooling layer, with the last part of the architecture consisting of fully-
connected layers. AlexNet has been found to capture more unrelated background
information in its final convolutional layer that confuses the prediction, whereas
VGG-16 helps cover the full receptive field with larger feature maps and thus,
outperforms AlexNet.

3.2 Adversarial Attacks

Deep Fool [11] - Deep Fool is an untargeted white box attack that misclassifies
an image with the minimal amount of perturbation possible. For intuition, in a
binary classification problem, there exists a hyperplane separating two classes;
DeepFool takes an input x and projects it onto the hyperplane while pushing it
a little beyond, misclassifying it. As a result, in the multi-class extension of the
problem of image classification, DeepFool projects the input, x, to the closest
hyperplane and misclassifies it. Equation 2 represents the function to compute
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the closest hyperplane given an input x0 where f are class labels and w are the
gradients.

l̂ (x0) = arg min
k 6=k̂(x0)

∣∣∣fk (x0)− fk̂(x0)
(x0)

∣∣∣∥∥∥wk −wk̂(x0)

∥∥∥
2

(2)

Fast Gradient Sign Method (FGSM) [4] - Most image classification archi-
tectures are neural networks, which learn by updating weights via a backpropa-
gation algorithm that computes gradients. Fast Gradient Sign Method uses the
gradients of the neural network to generate an adversarial example by using the
gradients of the loss with respect to the input image x to create a new image
which maximizes this loss. Furthermore, the input image x is manipulated by
adding or subtracting a small error ε to each pixel depending upon the sign of
the gradient for a pixel. Equation 3 represents the simple, cheap cost function
to obtain the optimal max-norm constrained perturbation of an input image x,
with parameters of the model θ, the cost to train the model J(θ,x, y) and a
small multiplier ε to guarantee small perturbations. The addition of errors in
the direction of the gradient results in misclassification.

η = εsign (∇xJ (θ,x, y)) (3)

Projected Gradient Descent (PGD) [10] - This targeted white box attack
is an extension of FGSM and is often referred to as Iterative-Fast Gradient Sign
Method (I-FGSM), where FGSM is applied to an image iteratively. Since this
is a targeted class, the objective is not to simply just misclassify the image but
to classify the image to a specific desired class. In FGSM, the loss is calculated
with respect to the true class and added the gradients computed with respect to
the true class increasing loss for the true class and misclassifying it. However, in
this case, the loss is calculated with respect to the target class to minimize the
loss for the target class moving in the direction of the target class. This process
can be described as projecting onto a lp ball with a defined radius and clipping
the values of the adversarial sample so that it lies within the set data range.
This multi-step variant of FGSM is shown in Equation 4 where S is :

xt+1 =
∏
x+S

(
xt + αsign (∇xL (θ, x, y))

)
ε (4)

3.3 Attribution Methods

Sliding Patch Method [17] - In this input perturbation attribution method,
one can systematically occlude different portions of the input and monitor the
output of the classifier. We slide an occlusion patch of different sizes across the
input image. By investigating the changes that occur in prediction, one can
create a heat attribution map. However, given different size occlusion patches, a
robust machine learning method should generate a consistent attribution map.
Our experiments look at the consistency of maps as a function of patch size.



6 Daniel Schwartz, Yigit Alparslan, and Edward Kim

Grad-CAM [14] - Gradient-weighted Class Activation Mapping (Grad-CAM)
is a backtracking method that uses the gradients of a target in the final con-
volutional layer to produce a coarse localization map highlighting important
regions in the image for the final prediction. Grad-CAM is able to localize class-
discriminative regions while being orders of magnitude cheaper to compute than
occlusion methods. These types of attribution visualizations are critical to pro-
vide interpretability to a model and build trust with the end user. For machine
learning robustness, we postulate that slight transformations to the input image
should not significantly alter the attribution maps.

4 Experiments and Results

For our experiments, we first validate that sparse regularization is able to main-
tain a high level of accuracy over a range of sparse penalty parameterizations.
We then experiment with adversarial examples and empirically validate the ef-
fects of adding regularization to the attacked model. Lastly, we validate that
sparse regularization has a consistency effect when exploring parameterizations
and input perturbations for class attribution.

4.1 Sparse Regularization Effect on Average Density

(a) Average Density of Neurons in CNN (b) Training Accuracy of CNN

Fig. 1: A comparison of the average density of a single layer CNN and its regu-
larized variants. This experiment shows the intuition that sparse CNNs (models
with low average density) perform just as well if not better as dense CNNs.

While we are researching different regularization methods, we note that there
is a clear connection between regularization and sparsity in the weights of the
model and output of representation. Sparsity is induced by forms of regulariza-
tion (L1, Elastic Net, Dropout, etc.), which provide us with the many benefits
of regularized models. A common metric to measure sparsity is the Average Ac-
tivity Ratio (AVR) or the average density of neurons activated per stimulus.
Representationally the activation of a neuron denotes the use of an additional
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dimension used to encode the data. Thus, the least amount of neurons activated
per projection into the output space, the sparser the representation of the data.

Our first experiment is to empirically show that sparse regularization per-
forms on par with a non-regularized counterpart. The distinguishing feature of
sparse coding compared to local or dense code is that its activity ratio lies in the
range of [0, 0.5]. For intuition, we train a single layer CNN and impose a sparsity
constraint on a cross entropy loss in Equation 5,

L = − 1

m

m∑
i=1

(yi · log(ŷi) + (1− yi) · log(1− ŷi)) + λ
∑
j

|aj | (5)

Where m indicates the number of examples and i indicates the specific example
being trained. Additionally, yi refers to the ground truth target and ŷi is the
predicted output from the single layer CNN. Lastly, the last term of the loss
function represents the regularization on the network, where |ai,j | is the absolute
value of the activation for the hidden neuron j in the CNN layer and for each
example the sum of activations for all hidden neurons is regularized by λ, a
hyperparameter that affects the sparsity constraint. The closer λ is to 1, the
more sparsity encouraged and the closer λ is to 0, the less sparsity is encouraged.
We set λ to 0 for the base model and scale λ from 1e− 4 (0.0001) down to 1e−
7 (0.0000001) to examine the different effects sparsity has on training accuracy.

In Figure 1, we achieve sparse code without losing much in terms of accuracy.
There are 39, 200 trainable neurons in the network and the graph of the Average
Density denotes the decimal equivalent of the quotient of number of neurons
activated divided by the total number of trainable neurons. It is clear that the
regularization encourages the Average Density to decrease, but the accuracy of
the less dense models are just as accurate, if not better.

4.2 Robustness Against Adversarial Attacks

(a) Attacks on ResNet (b) Attacks on MobileNet (c) Attacks on VGG-16

Fig. 2: A comparison of the accuracy achieved on different architectures when
attacked by an adversarial algorithm (DeepFool, FGSM, and PGD). In nearly
all cases, regularization helps improve the robustness of the model. Elastic net
regularization is most consistent with robustness against adversarial attack.
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(a) Accuracy of Training Data (b) Accuracy of Validation Data

(c) Loss Curve of Training Data (d) Loss Curve of Validation Data

Fig. 3: VGG-16 training and validation accuracy and loss on CIFAR-10. In (d)
the base model validation loss is beginning to show signs of overfitting as the
loss starts to demonstrate high variance.

Next, we run experimentation on how regularization can improve robust-
ness against adversarial attacks on the architectures: ResNet, MobileNet, and
VGG-16. We train each architecture: ResNet-50, MobileNet, and VGG-16 on
the CIFAR-10 dataset, then generate adversarial images using the various at-
tacks: DeepFool, Fast Gradient Sign Method (FGSM), and Projected Gradient
Descent from [13]. Next, we retrain the networks on the training set augmented
with the adversarial images i.e. adversarial training, and evaluate the classifier
on the test set and record the accuracy of the network on the adversarial images.
To regularize each of the tested network, we impose layer weight regularizers on
all 2D convolutional layers as well as all fully-connected layers. We do this by
applying a regularizer penalty on the layer’s kernel. We implement three dif-
ferent versions of each architecture with a distinct regularizer. We compute the
penalty for the layer’s kernel by the l1 norm in which the loss is equivalent to
L (x) = l1 × ‖x‖ where l1 is the regularization factor set to 0.01. We also run
a series of experiments where the models are regularized by the l2 norm such
that the loss is computed as L (x) = l2× x2 where l2 is the regularization factor
set to 0.01. Lastly, we run a series of experiments where the models are regu-
larized by both the l1 and l2 norms, e.g. elastic net. As we can see in Figure
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Model Regularization DeepFool[11] FGSM[4] PGD[10]

ResNet

Base 19.60 23.80 18.00
L1 34.20 16.00 28.40
L2 25.20 11.40 13.20

Elastic Net 33.80 37.40 38.20

MobileNet

Base 11.40 22.20 22.00
L1 27.20 22.60 28.00
L2 38.40 30.20 25.40

Elastic Net 25.40 27.00 19.40

VGG16

Base 8.40 7.60 1.60
L1 10.80 8.00 8.00
L2 11.30 10.20 8.00

Elastic Net 11.40 11.40 10.80

Table 1: Accuracy on testing samples that have been attacked by different ad-
versarial algorithms (DeepFool, FGSM, and PGD) on CV Models Trained on
CIFAR-10 (ResNet, MobileNet, VGG-16). Quantitatively, we see gains in ro-
bustness for regularization techniques across all architectures, and all attacks.

2 and in Table 1, imposing sparse regularization on these deep learning archi-
tectures ensures a more robust generalized model. We believe the restriction on
the number of nodes activated encourages only the most important features to
be represented when encoding into an embedding. Indeed, it appears that in
every account, the regularized models demonstrate some effectiveness towards
mitigating adversarial attacks.

The training process, e.g. model accuracy and loss, can be seen in Figure
3. We can see that the regularized models take slightly longer to converge, but
all models are able to achieve the same accuracy and loss on the training and
validation sets. However, in the case of no regularization, the validation loss
begins to vary wildly, Figure 3(d). This is likely due to the fact that the model
is beginning to overfit to the training data.

4.3 Stability in Class Attribution

For our final experiment, we investigate how regularization can improve robust-
ness in the attribution task. Namely, we propose that for a model to be robust,
it should maintain a level of consistency in the explanation e.g. class attribution
maps, as the hyperparameters of the system are perturbed. If the attribution
maps drastically vary from small changes in the input size, or patch size, then
the model would not be considered robust. We can quantitatively measure the
level of consistency between attribution maps by a pixel-wise sum of squared
distances (SSD) between examples. For the attribution task, we use two distinct
methods - Grad-CAM a gradient based attribution method, and an occlusion
method using Sliding Patches.

We are able to visualize the attribution maps given example CIFAR images
for the occlusion Sliding Patch method, Figure 4. In this method, we first slide a
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(a) Original (b) Base (∆26.7) (c) L1 (∆9.0) (d)L2 (∆12.1) (e) L1 L2 (∆12.8)

Fig. 4: Attribution heat maps generated by the Sliding Patch method. The first
row shows the original image (a) and the heat map generated for the resulting
class using a patch size of 4 and a jump size of 2. The second row shows an
overlay of the heat map on the original image (a) and the heat map generated
using a patch size of 2 and a jump size of 2. The sum of squared differences
between row 1 and row 2 are shown as ∆ for each of the methods.

gray patch of size 4×4 across the image with a stride (jump parameter) of 2. We
observe the output of the model and can quantify how much the occluded patch
effects the classification output. The attribution heat maps for the 4 × 4 patch
can be seen in first row of Figure 4. We then change the parameters of the system
by sliding a 2× 2 patch across the image with a stride of 2. We can see that this
parameter change does have an effect on the end result as seen in row 2 of Figure
4. We compute the SSD from row 1 and row 2 to compute the difference between
maps. A more consistent map would have lower SSD. As shown numerically over
1,000 random CIFAR-10 images, see Table 2, L1 regularization has the best and
lowest overall attribution change for the Sliding Patch method.

Next, we evaluate the Grad-CAM method, which can be seen in Figure 5.
Similar to the occlusion method, we can compare the SSD between row 1 and row
2 attribution maps. However, in this case there is no internal parameterization
of the Grad-CAM method. Thus, in order to evaluate stability of the method,
we slightly transform the input image. For our experiment, we chose to blur
the original image via a Gaussian kernel of size σ = 0.5. The intuition is that
a slightly blurred version of an image should not change the attribution map
drastically. And in fact, we show that the regularized models do improve the
stability of attribution as quantitatively shown in Table 2.

5 Conclusion

In this paper, we have analyzed the performance of image classification architec-
tures and the effect that robustness and sparsity has on their robustness against
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(a) Original (b) Base (∆15.6) (c) L1 (∆2.6) (d)L2 (∆4.4) (e) L1 L2 (∆18.2)

Fig. 5: Attribution heat maps generated by the Grad-CAM method. The first
row shows the original image (a) and the heat map generated for the resulting
class. The second row shows the original image blurred by a Gaussian kernel
with σ = 0.5 (a) and the heat map generated on the blurred image. The sum
of squared differences between row 1 and row 2 are shown as ∆ for each of the
methods.

Table 2: Sum of Squared Differences (SSD) of Attribution heat maps when al-
tering a hyperparameter of the system. For Sliding Patches, we change the patch
size from 4 pixels to 2 pixels. For Grad-CAM, we transform the input image by
a Gaussian blur kernel with σ = 0.5.

Attribution Base L1 L2 Elastic Net

Sliding Patch[17] 26.31 ± 27.19 18.51 ± 15.28 18.62 ± 13.48 20.92 ± 17.83
Grad-CAM[14] 24.53 ± 34.19 15.13 ± 24.95 15.12 ± 20.92 13.96 ± 22.51

adversarial attacks and the stability when performing image attribution. We have
shown that enforcing sparsity, especially in the form of regularization upon the
convolutional and fully-connected layers within these deep neural architectures
has helped the robustness of the model and outperform the base model without
regularization in correctly classifying images despite various adversarial attacks
against the dataset. We looked at different attacks exploiting vulnerabilities in
the architectures themselves as well as some attacks whose only objective was to
misclassify the image. Our results as indicated in Table 1 and visualized in Figure
2, show the benefits of imposing regularization to combat adversarial attacks to
computer vision models. Furthermore, we show that sparse regularization creates
stability within image attribution frameworks. Specifically, Elastic Net seemed
to produce the most robust results across all attacks and all attribution methods.
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