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Abstract

In this paper, we present a new object matching algo-
rithm based on linear programming and a novel locally
affine-invariant geometric constraint. Previous works have
shown possible ways to solve the feature and object match-
ing problem by linear programming techniques [9], [10].
To model and solve the matching problem in a linear for-
mulation, all geometric constraints should be able to be ex-
actly or approximately reformulated into a linear form. This
is a major difficulty for this kind of matching algorithms.
We propose a novel locally affine-invariant constraint which
can be exactly linearized and requires a lot fewer auxiliary
variables than the previous work [10] does. The key idea
behind it is that each point can be exactly represented by an
affine combination of its neighboring points, whose weights
can be solved easily by least squares. The resulting overall
objective function can then be solved efficiently by linear
programming techniques. Our experimental results on both
rigid and non-rigid object matching show the advantages of
the proposed algorithm.

1. Introduction
The problem of object matching in 2D images can be de-

fined as matching a model graph representing an object to an
instance of that object in a given scene image. It has exten-
sive uses in object detection and tracking [9], shape match-
ing [10], image classification [15], and image retrieval [17].
The nodes and edges of a model graph represent distinc-
tive feature points and the neighborhood relationships be-
tween them, respectively (Fig. 1(a)). After feature points
are detected in the scene image (Fig. 1(b)), point corre-
spondences between model and scene feature points are es-
tablished. Matched scene feature points should maintain
consistency with the model graph in both local appearance
and relative spatial relationships.

The object matching problem has been extensively stud-
ied as a graph matching problem [6], [8]. Compared with
the RANSAC algorithms [4], the graph matching match-
ing approaches usually can handle more complex defor-
mations. Leordeanu and Hebert [11] proposed a spectral
method working on a matrix where the diagonal elements
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Figure 1. Matching a model graph to a scene image by our method.
(a) A model graph representing a magazine, (b) a scene image and
detected feature points in it, and (c) the final matching result by
our proposed method. SIFT features [12] are used in this example.

represent one-to-one assignment costs, and other elements
represent pairwise agreements between potential correspon-
dences. The correspondences are then obtained by find-
ing the principal eigenvector of this matrix. This method
uses the distance between two points as the geometric con-
straint, which is only rotationally invariant. The same rota-
tional invariant is also used in a point matching method [18].
Cour et al. [5] proposed a spectral relaxation method for
the graph matching problem that incorporates one-to-one
or one-to-many mapping constraints, and presented proper
bistochastic normalization of the graph matching compati-
bility matrix to improve the overall matching performance.
Duchenne et al. [7] used high-order (mostly 3) constraints
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instead of unary or pairwise ones between nodes, which re-
sult in a tensor representing affinity between feature tuples.
The resulting energy function can then be optimized using
the power iteration method. Note that the definition of the
graph in graph matching algorithms is different from that
of our model graph; in our model graphs, edges are un-
weighted and are only used to specify the neighborhood for
each node.

The matching problem has also been modeled as math-
ematical programming problems. Chui and Rangarajan
[3] interpreted it as a mixed variable (binary and continu-
ous) optimization problem. The correspondence problem is
viewed as a linear assignment solved by softassign and de-
terministic annealing. Berg et al. [2] modeled the matching
problem as a quadratic integer programming problem. It
uses pairwise relationships between feature points and pe-
nalizes both rotation and scaling differences. Recently, lin-
ear programming has been used in object matching. Jiang
et al. [9] proposed a linear solution to the feature matching
problem. The main difficulty of this framework is to find ge-
ometric constraints which can be exactly or approximately
linearized. In [9], the vectors defined by pairwise points are
used as the geometric constraint for its objective function.
It can only tolerate small local deformations and is not in-
variant to global transformations, such as similarity or affine
transformations. To solve this problem, Jiang and Yu [10]
explicitly modeled scaling and rotation, and approximated
the resulting formulation by a convex program. The result-
ing solution is invariant to global rotation and scaling. Its
extensive experimental results demonstrated the effective-
ness and robustness of the pairwise geometric constraint in
various object matching scenarios.

Along this line, we propose a new locally affine-invariant
geometric constraint for the linear programming matching
framework. For each point in the model graph, we represent
it as an affine combination of its neighboring points. Such
affine combinations can be easily and efficiently solved
by least squares. As demonstrated in the next section,
these representations are invariant to affine transformations.
Moreover, since the coefficients of each affine combination
are only calculated by using its corresponding point’s neigh-
boring points, this constraint is a local one.

Compared with the global rotation and scaling invariant
constraint proposed in [10], our new geometric constraint
has three major advantages over it: (1) our proposed ge-
ometric constraint is locally affine-invariant. Therefore, it
can handle more complex and natural transformations of an
object. For instance, objects undergoing articulated defor-
mations in Section 3.3. (2) Unlike the explicit approximate
linearization of the previous similarity invariant constraint,
the exact linearization of our new constraint requires much
fewer auxiliary variables. Therefore, it is asymptotically
faster and is also easier to implement. And (3) for each
point in the model graph, all of its neighboring points are
used to calculate the affine combination coefficients. It is a

higher order geometric constraint, which is more distinctive
and can better exclude ambiguous matchings [7].

2. Methodology

2.1. Problem Formulation

Given a model graph (V, E), where V and E repre-
sent the sets of nodes and edges of the model graph, the
matching function m(·) matches every model feature point
pi = [xi, yi]T ∈ V to a feature point m(pi) in the scene
image. Npi stands for the set of ordered points in the neigh-
borhood of pi. The order of points in each neighborhood is
randomly set. The goal is to find the matching function m(·)
that minimizes the overall objective function consisting of
both feature and geometric matching costs:

m̂ = argmin
m

|V |∑
i=1

{c(pi, m(pi))

+ λ · g(pi,Npi ; m(pi),Nm(pi))
}

, (1)

where c(a,b) is the feature matching cost between the fea-
ture points a and b, g(·) is the geometric cost that mea-
sures the geometric dissimilarity between two sets of or-
dered points {pi,Npi} and {m(pi),Nm(pi)}, and λ con-
trols the relative weight between the feature and geometric
costs.

Unlike the formulation proposed in [9], [10], where only
pairwise geometric relationships are considered, our new
formulation takes into consideration of higher order (at least
order 3) geometric constraints, which are more distinctive
and therefore can better exclude ambiguous matchings [7].

The neighborhood Npi of pi is specified by the edges
connected to pi. It remains an open issue how to create
model graphs better representing different objects for the
object matching problem. In this paper, we focus on match-
ing a given model graph to a scene image and used Delau-
nay Triangulation to create most model graphs.

Similar to [10], the choice of features is not restricted
to similarity or affine invariant ones, e.g., SIFT [12]. For
general non-transformation-invariant features, the matching
cost between two feature points a and b can be defined by
the minimal distance across all possible similarity or affine
transformations T with parameters Θ,

c(a,b) = min
Θ

distance(feature(a), feature(T (b; Θ))).

(2)

2.2. A Locally Affine-Invariant Constraint

In this subsection, we present a novel locally affine-
invariant geometric constraint for the geometric cost func-
tion g(·) in (1).

Our geometric constraint has two requirements on the
structure of the model graph: 1) every node must have at
least three neighbors, i.e., the degree of each node is at



least 3; and 2) every node’s neighboring points must not be
collinear, i.e., they do not lie on a single straight line. Our
goal is to create a way to characterize the geometric proper-
ties of the neighborhood of each node. To do so, we assume
each pi can be exactly represented by an affine combination
of its neighboring points, i.e.,

pi =
∑

pj∈Npi

Wijpj , (3)

where W is a |V | × |V | weight matrix recording the affine
combination coefficients for all points, and Wi is the ith row
of W recording the affine combination coefficients for pi.
Intuitively, Wi reveals the local geometric layout around pi.
There are two constraints on the weight matrix W : Wij = 0
if pj /∈ Npi and each row must sum to one (equivalently,
each point is represented by an affine combination of its
neighbors). The first constraint reflects that this matrix only
describes the local geometric properties of each point. The
second makes the representation invariant to global transla-
tion.

It is easy to prove that a point can always be exactly rep-
resented by the affine combination of its neighbors if the
above mentioned two requirements are satisfied. Assume pi

has only three neighbors q1, q2, and q3. The affine combi-
nation coefficients Wi for pi can be obtained by first solving
the following linear equations:[

q1 q2 q3

1 1 1

]
W̃T

i = QW̃T
i =

[
pi

1

]
. (4)

Because q1, q2 and q3 are not collinear, the matrix Q has
full rank. W̃T

i = Q−1[pT
i 1]T is an exact solution of the

affine combination coefficients for pi. We can then fill Wi

using W̃i: Wij = W̃il if pj is the lth neighbor of pi, and
Wij = 0 if pj /∈ Npi . If pi has more than 3 neighbors,
we can still obtain an exact affine combination by just using
the first three neighbors. In practice, we use least squares to
minimize the error of each point’s affine combination. Since
least squares guarantees to obtain a solution with minimal
error under L2 norm, and we just showed at least one solu-
tion with zero error exists, the solution by least squares is
also an exact representation of that point. Although there
might be an infinite number of affine representations for a
point, any one of them can be used in our framework. We
choose least squares because one of its desired properties
is that it usually assigns nonzero weights to all neighbors,
which means the local geometric properties of each point
are described by all of its neighbors.

We calculate the reconstruction weights W̃i for each
point pi separately and transform them into the matrix form
W by the above mentioned way. The representation error
for ∀pi ∈ V is always zero no matter what type of norm is
used, i.e., ∥∥∥∥∥∥pi −

∑
j

Wijpj

∥∥∥∥∥∥
0,1,2,··· ,F

= 0 (5)

for i = 1, · · · , |V |. For this particular application, we
choose the L1 norm for the representation error, since it
can be exactly linearized (Section 2.5). Obviously, the error
function (5) is affine invariant:

0 =

∥∥∥∥∥∥pi −
∑

j

Wijpj

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥Api −
∑

j

WijApj

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥(pi + t) −
∑

j

Wij(pj + t)

∥∥∥∥∥∥
1

,

where A and t denote an arbitrary 2×2 affine transformation
matrix and an arbitrary 2×1 translation vector, respectively.

Without any feature information, we seek a matching
function m(·) which best preserves the geometric proper-
ties of the model graph specified by its weight matrix W :

argmin
m

|V |∑
i=1

∥∥∥∥∥∥m(pi) −
∑

j

Wijm(pj)

∥∥∥∥∥∥
1

. (6)

On one hand, there are degenerate cases: matching all
model points to one scene point also leads to a zero geo-
metric cost because

∑
j Wij = 1. Fortunately, in the object

matching tasks, features have distinctive power. Those de-
generate cases usually result in very large feature costs and
thus are not likely to be the optima of the objection function
(1). Even when the features used are not distinctive enough,
we can further add constraints into our linear programming
model to explicitly exclude those degenerate cases (Section
2.4). On the other hand, some parts of an object may be
folded. If the features are invariant to such local deforma-
tions, matching several model points to one scene point also
minimizes the error function (5) and should be considered
as a correct matching (Section 3.4).

Compared with the approximately global rotation and
scaling invariant constraint in [10], our new geometric con-
straint (1) is locally affine-invariant, (2) does not explicitly
model any global transformation, and (3) can be exactly lin-
earized with a lot fewer auxiliary variables.

2.3. Relation to Locally Linear Embedding [16]

Our affine invariant is inspired by the Locally Linear Em-
bedding (LLE) and has a similar formulation, but our invari-
ant is different from LLE in essence. Our invariant assumes
each point can be represented by an “affine” combination of
its neighboring points. Its reconstruction error by the affine
combination is affine-invariant. In contrast, the LLE as-
sumes a “convex” combination, and the resulting W coeffi-
cients are similarity-invariant. However, LLE’s reconstruc-
tion error for each point is not transformation-invariant, thus



its “convex” combination cannot be used in this matching
framework.

2.4. Matrix Formulation
Following the representation in [10], we also present (1)

in a succinct matrix form using an assignment matrix X
to help readers better understand the objective function and
constraints.

Let kn denote a column vector of n k’s where k is a
constant, T matrix transpose, tr the trace of a matrix, In an
n×n identity matrix, and | · | the summation of the absolute
values of all the elements in a matrix. Let nm and ns be
the numbers of model and scene feature points, respectively.
After we calculate the weight matrix W of the model graph,
the solution to the matching problem can be solved by

min f(X) = tr(CT X) + λ|(Inm − W )XS| (7)

subject to X1ns = 1nm ,

X ∈ {0, 1}nm×ns ,

XT 1nm ≤ uns (optional),

The variable X is a nm × ns binary assignment matrix
that represents the matching function m(·). Each row of X
contains exactly one 1, meaning every point in the model
graph must be matched to exactly one point in the scene
image. X(i, j) = 1 denotes matching the ith model feature
point to the jth scene feature point. If one model point’s
corresponding scene point is occluded or not detected, min-
imization of (7) would prefer matching it to another scene
point which well approximates that model point’s local ge-
ometric properties.

There are three known matrices in (7):

• S is the ns × 2 coordinate matrix. It records the coor-
dinates of ns 2D scene points.

• C is the nm×ns feature matching cost matrix. C(i, j)
is the feature matching cost between the ith model
point and the jth scene point.

• W is the nm × nm coefficient matrix for point repre-
sentations. The ith row of W records the affine combi-
nation coefficients for representing the ith model point
by its neighboring points.

There are three constraints:

• X1ns = 1nm denotes all model points should be
matched into the scene.

• X ∈ {0, 1}nm×ns denotes the matching between a
model and a scene feature point is either “yes” or “no”.

• XT 1nm ≤ uns allows matching at most u(u < nm)
model points to one scene point and thus avoids the
degenerate cases we mentioned in Section 2.2. How-
ever, in practice, this constraint is usually not neces-
sary since matching all model points to one scene point

usually leads to a very large feature matching cost. It
should be used only when features are not distinctive
enough because it adds ns more constraints to the op-
timization model.

The objective function f(X) consists of a feature and a
geometric cost term. The feature cost term tr(CT X) is the
matrix form of the first term in (1). The geometric cost term
|(Inm − W )XS| is the same as the cost definition in (6).

2.5. Exact Linearization and Relaxation
The problem (7) has a nonlinear objective function with

integer constraints. It is NP-complete and cannot be effi-
ciently solved. However, because λ > 0, the second term
of (7) can be exactly linearized in the following way:

min
∑N

i=1 |xi| ⇔ min
∑N

i=1 x+
i

subject to xi ≤ x+
i , xi ≥ −x+

i

x+
i ≥ 0,

for all i = 1, · · · , N ,

where x+
i is the ith auxiliary variable representing the upper

bound of |xi|.
We further relax the binary constraints, X ∈

{0, 1}nm×ns , to continuous domains [0, 1]nm×ns to con-
vert the original problem (7) into a linear programming (LP)
form:

min f(X) = tr(CT X) + λ1T
nm

X+12 (8)

subject to X1ns = 1nm , X ≥ 0,

(Inm − W )XS ≤ X+,

(Inm − W )XS ≥ −X+,

X+ ≥ 0,

XT 1nm ≤ uns (optional),

where X+ is a nm × 2 auxiliary variable matrix.

2.6. Numerical Scheme
Without any simplification trick, the number of variables

in our LP model (8) is proportional to nm ×ns. In contrast,
the number of variables of the LP model in [10] is propor-
tional to nm × ns × the number of scaling discretizations.
Moreover, at the first step of the LP method in [10], it needs
to solve 4 such LP problems because it models rotation as
4 different linear constraints. Therefore, our algorithm is
asymptotically faster than that in [10].

We utilize the lower convex hull with successive trust
region shrinkage method proposed in [9] to solve our LP
problem (8). This method makes the complexity of the LP
nearly independent of the number of scene points. The dif-
ference is that we only use its consistent rounding process
in the last 2-3 iterations. Before that, we directly use LP’s
results as anchors for the shrinkage of trust regions.

LP with tens of thousands of variables and thousands
of constraints can be solved within seconds on a stan-
dard PC using state-of-the-art solvers, such as CPLEX and



Gurobi. In our experiments, we use MATLAB with a non-
commercial solver, lp solve [1], which employs the simplex
methods. Typically, for matching 100 model points and
thousands of scene points, each LP iteration takes less than
1 second on an Intel E6850 3.0GHz CPU, and the trust re-
gion shrinkage runs for 4-8 iterations. Note that the running
time can be further shortened because the simplex methods
lp solve uses are less efficient than the interior point meth-
ods when solving medium to large size LPs, and MATLAB
is less efficient than C/C++ on iteration operations.

3. Experiments
In our experiments, we only use gray-scale images to

create more challenging cases since features on gray-scale
images are less distinctive than those on color images. SIFT
[12] or MSER [13] detectors are used as feature point de-
tectors. The SIFT descriptor [12] is used as the feature for
every detected point, and feature dissimilarity is calculated
by the L2 distance between two feature vectors. For all ex-
periments, we set λ = 1.

3.1. Objects Undergoing Similarity Transforma-
tions

We first modeled an IEEE Spectrum magazine (Fig. 1(a))
and matched it to its transformed instances in scene images
with cluttered background (Fig. 2). For the model graph,
nodes were selected as SIFT points with scales between 2
and 10, and edges were obtained by computing the Delau-
nay Triangulation of the nodes. Although there were many
outlier feature points in the scene images, and some model
points’ corresponding scene points were not detected, our
method still was able to match the magazine to the scene
images efficiently and robustly (Fig. 2(1)). We also did
experiments using feature information only to show the ne-
cessity of the geometric constraint (Fig. 2(2)).

3.2. Objects Undergoing Affine Transformations
Our geometric invariant is able to handle objects’ natural

affine transformations. One such example is the transfor-
mation caused by viewpoint change when viewing objects
with planar surfaces. We used two sets of viewpoint change
images (Fig. 3 and Fig. 4) from [14] to evaluate the perfor-
mance of our matching method under approximately affine
transformations. Each of the two sets, graf and wall set,
contains 6 images of a planar wall. We created a model
graph using the first image in each set and matched it to
other images with different viewpoints in the same set.

For the nodes in the model graph, we used feature points
detected by MSER in the central area of the first image. The
two parameters of MSER, minimal region size and mini-
mal margin, were set to 30 and 15, respectively. We further
excluded duplicate nodes and nodes with too small scales.
Edges of the graph were then obtained by Delaunay Trian-
gulation (Fig. 3). For detecting feature points in the scene
images, we used the default parameter settings of MSER.

Figure 3. Model graphs created based on feature points detected
by MSER in the first image of the graf set (left) and in the first
image of the wall set (right) [14]. See Section 3.2 for details about
how the graphs are built.

Note that the MSER does not only detect feature locations
but also calculate three other shape parameters. The calcu-
lation of the SIFT descriptor relies on all those 5 parameters.

In the graf set, images of a painting on the wall are taken
from different viewpoints. In the wall set, images of a brick
wall are taken. The brick wall has a relatively uniform tex-
ture appearance which makes the MSER detector less accu-
rate and the SIFT features less distinctive. Matching in the
wall set is therefore a much more challenging problem. Our
method matched the model graph of graf to all graf images,
and matched the model graph of wall to the first 4 wall im-
ages. Some correct correspondences in the 5th wall image
are recovered, but the overall matching is not satisfactory.
In contrast, the LP based method in [10] only satisfactorily
matched the 2nd image in each set where viewpoint change
angles are small (Fig. 4.(2a)) but failed on all other images
with larger viewpoint change angles (Fig. 4.(2b-e)) because
it only models objects’ rotation and scaling.

3.3. Objects Undergoing Articulated Deformations

Our local geometric constraint only tries to maintain
each point’s local geometric properties and thus can match
objects undergoing articulated deformations. In Fig. 5, we
show an experiment of matching a toy worm with distinc-
tive features (Fig. 5(a)) to its bended instances in scene
images. To obtain the model graph, we manually removed
some edges after calculating the Delaunay Triangulation of
feature points to avoid building strong connections between
different moving parts. Results in Fig. 5(c) and 5(d) demon-
strate the advantages of our local geometric constraint over
the global constraint proposed in [10]. The LP method in
[10] would fail on these cases because it models the global
rotation for the entire model graph and can only tolerate
small rotation disagreement between different parts.

3.4. Real Videos
We did experiments on real videos, some taken by our-

selves (the Computer and Spectrum magazine videos) and
one obtained from the YouTube (the honeybee video). Simi-
lar to the matching experiment in Section 3.1, we used SIFT
points in the selected object regions as the nodes of model
graphs and built their neighboring connections through De-
launay triangulation (Fig. 6(a)). We applied our method to



Figure 2. Matching the Spectrum magazine (Fig. 1(a)) in scene images with cluttered background. (From left to right) the magazine is not
rotated, rotated by 90 degrees, rotated by 180 degrees, and occluded by a hand. Unmatched scene feature points are marked in light blue.

(1)

(2)

(a) (b) (c) (d) (e)
Figure 4. Matching the model graphs in Fig. 3 to the graf and the wall sets using (1) the proposed method and (2) the LP method in [10].
Unmatched scene feature points are marked in light blue.

every single frame of those videos and did not utilize any
temporal information. The algorithm does not need initial-
ization and can track an object undergoing large and com-
plex deformations. We compared our method with the LP
based method in [10] using those videos.

The Computer magazine video consists of mostly simi-
larity transformations, with some occlusions and local de-
formations (Fig. 7(1))1,2. For this video, our method has
similar matching accuracy as the LP method in [10] (Fig.
6(1)) but has an asymptotically faster running speed.

The Spectrum magazine video consists of mostly affine
transformations and non-rigid deformations3 (Fig. 7(2)).
On this video, our method outperforms the LP method in

1Results: www.youtube.com/watch?v=QZpYP0DTENA.
2Feature points: www.youtube.com/watch?v=WarQ31l8HSk.
3Results: www.youtube.com/watch?v=yvd4Ma6YWVY.

[10] because our geometric constraint is affine-invariant,
and its local property enables it to handle larger non-rigid
deformations. One such example is shown in Fig. 6(2)
where the magazine is wrapped inwards. The global ge-
ometric constraint of [10] prefers scaling the model graph
globally. Our local constraint tries to maintain each point’s
local geometric properties so it can better handle such non-
rigid deformations. Note that the binaries of [10] we ob-
tained from its authors have a fixed parameter setting. We
speculate that its performance may improve if its parame-
ter setting is changed to give the geometric cost a smaller
weight.

The honeybee video looks simple, but it has fewer dis-
tinctive feature points than the previous 2 videos which
makes matching the the honeybee4 a more challenging task

4Results: www.youtube.com/watch?v=OovjtkPAHjk.



(a)

(b)

(c) (d)
Figure 5. Matching a toy worm undergoing articulated deforma-
tions. (a) The original image of the toy worm, (b) the model
graph, (c-d) two examples of matching the toy worm model to
its instances that have undergone articulated deformations.

(Fig. 7(3)). Our method outperforms the LP method in [10]
when a large portion of corresponding feature points are
missing in the scene images. Fig. 6(3) shows such an exam-
ple where only a fraction of the feature points on the hon-
eybee’s tail part are correctly detected. The global geomet-
ric constraint of the LP method in [10] favors all matched
scene points maintaining a similar geometric structure as
the model graph. It matches part of the tail correctly but
wrongly matches other parts to the background (Fig. 6(3c)).
In contrast, our geometric constraint only tries to keep local
geometric structures and thus can match disappeared fea-
ture points to shrunken neighborhoods. The result by our
method is shown in Fig. 6(3d) where the tail part is cor-
rectly matched.

4. Conclusions and Discussions

In this paper, we presented a novel locally affine-
invariant constraint for the LP-based object matching
framework. This constraint depends on exactly represent-
ing each point by an affine combination of its neighboring
points. Such representations were proved to be exact and
can be easily solved by least squares. Our proposed con-
straint showed several advantages over those in previous
works. Experiments on various matching cases for rigid
and non-rigid objects demonstrated the effectiveness and ef-
ficiency of our proposed algorithm.

However, how to create the model graph for a specific
object and how to set a proper weight between feature and
geometric costs remain important but open issues in our al-
gorithm. Handling occlusions of the model graph remains a
challenging problem for the graph matching [11], [7] and
the linear programming based matching [9], [10] frame-
works. Although in [9], an occlusion handling method is
proposed to match all occluded model points to a “null”
point, it has two limitations which make it difficult to use
in practice: (1) the “null” point’s matching cost needs to be

smaller than the cost of a wrong match and larger than that
of a correct match; and (2) the occluded model points can-
not be completely removed from the geometric constraint
term of the objective function. We would like to explore
possible ways to solve these problems in the future.

Acknowledgments. We would like to thank Dr. Hao Jiang
(Boston College) for providing us the code of [10] for com-
parison and for giving us precious suggestions on efficient
trust-region-shrinkage algorithms.
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Figure 6. Example matching results by our method and the LP method in [10] on videos. (a) Model graphs, (b) scene frames, (c) matching
results by the LP method in [10], and (d) matching results by the proposed method.

(1)
Frame 1 Frame 72 Frame 242 Frame 414 Frame 614

Frame 762 Frame 875 Frame 886 Frame 1166 Frame 1293

(2)
Frame 2 Frame 47 Frame 75 Frame 104 Frame 149

Frame 188 Frame 219 Frame 249 Frame 261 Frame 305

(3)
Frame 1 Frame 36 Frame 84 Frame 115 Frame 153

Frame 197 Frame 230 Frame 266 Frame 306 Frame 344

Figure 7. Sample matching results by our method from (1) the Computer magazine sequence, (2) the Spectrum magazine sequence, and (3)
the honeybee sequence. Unmatched scene feature points are marked in blue.


