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ABSTRACT

The number of new cases of thyroid cancer are dramatically increasing as incidences of this cancer have more than
doubled since the early 1970s. Tall cell variant (TCV-PTC) papillary thyroid carcinoma is one type of thyroid
cancer that is more aggressive and usually associated with higher local recurrence and distant metastasis. This
variant can be identified through visual characteristics of cells in histological images. Thus, we created a fully
automatic algorithm that is able to segment cells using a multi-stage approach. Our method learns the statistical
characteristics of nuclei and cells during the segmentation process and utilizes this information for a more accurate
result. Furthermore, we are able to analyze the detected regions and extract characteristic cell data that can be
used to assist in clinical diagnosis.
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1. INTRODUCTION

Thyroid cancer is the fastest increasing cancer in both men and women and is the most common endocrine
cancer.1 According to the National Cancer Institute’s Surveillance, Epidemiology, and End Results Program
(SEER),2 there will be 62,980 new cases of thyroid cancer and 1,890 people will die of this disease in 2014.
Additionally, thyroid cancer cases have been rising on average 5.5% each year over the last 10 years. Papillary
and follicular thyroid carcinomas are well-differentiated and account for 80-90% of all thyroid cancers. However,
within papillary cancer, there exist several variants that have been described based upon their morphological
features and clinical behavior. These variants ultimately can have a significant impact on recurrence and mor-
tality. One variant, tall cell variant (TCV-PTC), is an aggressive papillary thyroid carcinoma that is more likely
to be present with extra thyroidal extension. TCV-PTC has an incidence rate between 3.8% - 10.4% and has
shown to have a 4.5x recurrence rate and 14.28x increase in disease mortality when compared to the classical,
usual variant of papillary thyroid carcinoma (UV-PTC).3 Additionally, the tall cell variant of papillary thyroid
carcinoma has a poorer 5-year disease survival (81.9% vs 97.8%).4 Thus, it is important that the diagnosis of
TCV-PTC be accurate and precise.

2. BACKGROUND

Unfortunately, accurate diagnosis of TCV-PTC is a challenging problem for several reasons. One issue is with
the characterization of TCV. Hawk and Hazard were the first to identify this subtype in 1976, stating that
the tall cell variant is characterized by tumor cells that are at least twice as long as they are wide.5 Recent
literature from the World Health Organization has updated this characteristic to cells being three times their
width.6 The change in guidelines can cause ambiguity and further raises the question as to the significance
of the length-width ratio and the effect of this ratio on patient outcomes. Specifically, what is the correlation
(or is there even a correlation) between the length-width cell ratio and recurrence, presence of extra thyroidal
extension, and mortality? It is unknown how this factor independently relates to the prognosis.

The second challenge is with the classification of a TCV tumor. The literature has diagnosed the TCV in
tumors where the TCV comprised anywhere from 10% to 70% of a particular tumor.7 More recent literature



Figure 1. Flowchart describing the steps of our method. A global analysis of the image is performed to obtain exemplar
nuclei. This is followed by a color, size, and shape analysis of the nuclei. k-means segmentation is performed and clusters
belonging to nuclei and background are identified. The segmentation is skeletonized and the branch points are used as
seeds for a least squares ellipse fitting method. Finally, the cell borders can be estimated for a cell analysis.

has suggested that TCV-PTC should comprise of at least 50% morphology.7–9 Similar to the length-width ratio,
there is a threshold number that can be applied to the classification of a tumor; however, there is no direct
correlation data between the percent composition of a tumor and outcome.

These complications are now being brought to the forefront when performing a pathological review.10 “How
much of a tumor needs to show the features of TCV to be diagnosed as such?” “What is not TCV?” And most
importantly to a patient, “What are the consequences of a diagnosis of TCV?”

As a first step towards addressing some of these questions, we propose a method that detects, analyzes,
and describes the presence of the tall cells in histological images. Our method is fully automatic and is able
to generate a statistical model of the nuclei and cells within images during the segmentation process. We are
then able to count the number of regular cells, tall cells, and furthermore analyze the cells with regard to their
length-width ratio, percent of tall cells in the image, and cytological features, and nuclear crowding. As a guide
for the cytological criteria, we reference the work by Solomon et al.11 This study assessed the presence of seven
cytologic features in TCV and UV-PTC. These features are, papillary groups, elongated/tall cells, oncocytic
cytoplasm, distinct cell borders, prominent central nucleoli, nuclear grooves, and intranuclear inclusions. The
conclusion of this work states that cytologic features can distinguish TCV from UV-PTC and the most significant
features were elongated/tall cells, oncocytic cytoplasm, distinct cell borders, and “soap-bubble”-like intranuclear
inclusions.

Our method is primarily aimed at identifying the elongated/tall cell feature of papillary carcinoma; however,
it is well suited to be extended for additional classification. Qualitative and quantitative results demonstrate the
effectiveness of our method in detecting and describing tall cells. Our long term goal is to have this program be
an adjunctive tool in TCV-PTC diagnosis, as well as serve as a data collection mechanism for a larger regression
study on the effects of cell morphology on patient outcomes.

3. METHODOLOGY

Our method is a multi-stage image segmentation algorithm. A flowchart of the steps of our algorithm can be
seen in Figure 1. The fundamental idea behind our framework is to begin with a high level analysis of the input
image, gather global statistics of the image and nuclei, and then perform precise nuclei segmentation using both
global and local image data. The nuclei will be used in a cell estimation technique. The stages of our framework
are described in detail below.

3.1 High Level, Global Image Analysis

In the first step, we perform a high level, global analysis of the image. A basic thresholding is performed, along
with morphological opening and closing of the binary image in order to find possible exemplar nuclei that can
be used for training a statistical model of what characterizes a nucleus. A watershed algorithm is applied to
the modified thresholded image and potential regions of interest are created, see Figure 2(b)(f). Each area
is analyzed for convexity, and only the areas that meet a high convexity threshold (>80%) and eccentricity
threshold (<80%) are selected as exemplar nuclei, see Figure 2(c)(g). The image is converted from the RGB
color space to L∗A∗B∗ space and statistics are gathered from the exemplar cells including, average cell pixel
area, standard deviation of area, average L∗A∗B∗ color, and associated color standard deviation in each channel.
In the event that no exemplar cells can be identified automatically, our method allows for a manual selection of
cells for initial training.



(a) TCV-PTC (b) Initial generated ROI (c) Exemplar nuclei detected (d) k-means segmentation

(e) UV-PTC (f) Initial generated ROI (g) Exemplar nuclei detected (h) k-means segmentation

Figure 2. Visualization of the high level, global pass of the algorithm. The steps of visualized on a TCV-PTC image
can be seen in (a)-(d). The steps visualized on a UV-PTC image can be seen in (e)-(h). The k-means segmentation is
performed with k=10 classes.

With the statistical model of what a cell nucleus looks like in the given test image, we can perform a 3
dimensional L∗A∗B∗ color k-means segmentation, k = 10, on the image, see Figure 2(d)(h). We can then use the
exemplar nuclei color model to identify which k segments correlate with the cells, and distinguish between the
foreground (cells) and background. Specifically, this correlation is performed by computing the 3D Euclidean
distance between cluster centers and the mean L∗A∗B∗ color of the exemplar nuclei. The resulting k-means
segmentation is used to identify the preliminary segmentation for the next stage of our algorithm, see Figure
3(a)(e), that provide the binary image regions used in the individual nuclei segmentation.

3.2 Individual Nuclei Segmentation

In this next step, we analyze the given k-means segmentation and identify and analyze the nuclei that match the
color and size of exemplar nuclei. Unfortunately, with most variants of PTC, cells can exhibit nuclear crowding,
where the nuclei borders touch, or even overlap each other. An example of overlapping nuclei that create a merged
region of interest can be seen in Figure 3(e) where there is a large binary region of white that encompasses more
than one nuclei. These regions can be mathematically identified by searching for area regions that are beyond
two standard deviations of a typical nuclei and are within a 3D Euclidean color distance threshold, (t = 40)
of the nucleus model. In order to properly segment overlapping cells, we modify an ellipse fitting segmentation
algorithm, SNEF,12 to work with our application.

3.2.1 Modified Ellipse Fitting for Nuceli Segmentation

A modified SNEF method12 is the basis for this step of the segmentation framework. We briefly summarize
the method here, and emphasize the modifications we proposed with our algorithm. First, we morphologically
open and then skeletonize the region of interest to get centroid points as seed points, sx, sy, for an ellipse fitting
method, see Figure 3(b)(f). This skeletonization procedure removes pixels on the boundaries of objects but does
not allow objects to break apart. The pixels remaining make up the image skeleton. The set of seeds for our
framework consists of the set of branch points of the skeleton and the set of edge points. In contrast to Hukkanen
et al.12 which uses ultimate erosion to get seed points, empirically, the skeletonization method provides fewer
candidates and more accurate seed points.

For each seed point, we extend a ray outwards in all angles, α ∈ {1◦, . . . , 360◦}. A set of points on the
ray can be created by using the formulation, xi = sx + r cosα and yi = sy + r sinα. The length of the ray, r,
is extended (r = r + 1) until the ray intersects the boundaries of the k-means segmentation. The intersection
points will create a set of connected component segments, C1 . . . Cn, that surround the seed point. The connected



(a) k-means cluster selection (b) Skeleton with seed points (c) Candidate ellipses (d) Final ellipses

(e) k-means cluster selection (f) Skeleton with seed points (g) Candidate ellipses (h) Final ellipses

Figure 3. Individual nuclei segmentation steps of the algorithm. The steps of visualized on a TCV-PTC image can be
seen in (a)-(d). The steps visualized on a UV-PTC image can be seen in (e)-(h). The yellow circles in (b) and (f) indicate
both the branch and end points of the skeletonization method. The green ellipses in (d) and (h) are the final ellipses
selected by the maximization of the goodness of fit function.

components are sorted by ascending Euclidean distance from the centroid point and the seed point. One by one
these components are added to a list, D, and an ellipse is fitted to the resulting point set. The ellipse parameters
are estimated by a direct least squares fitting method.13 We store every candidate ellipse, e1 . . . en into a set, E ,
and compute find the best “fitting” ellipse to the image. The pixels representing a particular ellipse are defined
as P(e, sx, sy).

3.2.2 Goodness of Fit Maximization

In order to evaluate the best fit of an ellipse to the image, we define a goodness of fit function. The goodness
of fit takes into account the image gradient, the connected components obtained through raycasting, and the
statistical characteristics of the cell nuclei. The fit of an ellipse can be calculated by the function, g, and the
best fit is the ellipse ei ∈ E that maximizes the goodness of fit. This is formally defined as,

arg max
i

g(i) = λ1
|P (ei, sx, sy) ∩H|
|P (ei, sx, sy)|

+λ2
|Di ∩ P ′(ei, sx, sy)|

|Di|
+λ3(1− |A(ei)− Ā|1

2Ā
) +λ4(1− |T (ei)− T̄ |1

2T̄
) (1)

The first term, computes the overlap of the candidate ellipse and H, the dilated canny edges of the image. The
second term computes the overlap of the dilated candidate ellipse (P ′(ei, sx, sy)) and the set of points added to
the connected component list up until, and including, segment Di. The third term computes the normalized L1
norm of the difference between the candidate ellipse area and the mean area of the exemplar nuclei in the image,
defined as A(ei) and Ā respectively. The last term computes the normalized L1 norm of the difference between
the eccentricity of the candidate ellipse and the mean eccentricity of the exemplar nuclei, defined as T (ei) and
T̄ respectively. These last two terms are rewarding candidate ellipses that have similar shapes and sizes as the
exemplar nuclei.

The candidate ellipses with areas and major-minor axis ratios greater than 4x their respective means are
automatically discarded and not considered by this function. Furthermore, the λ’s control the relative weights of
each of the function components and are determined empirically in our framework. The following λ’s are used,
λ1 = 1, λ2 = 3, λ3 = 0.3, and λ4 = 0.3.

3.3 Cell Segmentation

The final stage of our framework involves the computation of the cell borders. In many cases of PTC, distinct
cell borders do not exist and image gradient based methods will not accurately detect the boundary of cells.



(a) TCV-PTC (b) Computed nuclei (c) Cell border estimation

(d) UV-PTC (e) Computed nuceli (f) Cell border estimation

Figure 4. Visualization of the cell estimation method through a modified voronoi tessellation. The final cell borders in
(c)(f) are highlighted in blue, and the computed length-width ratios are overlaid in the image.

Visually, one can see in Figure 2(e), the nuclei are prominently displayed; however, there are no cell borders
present in the image. Thus we developed a cell border estimation technique based upon the nuclei position and
background classification through the k-means segmentation.

We can estimate the cell through a modified voronoi diagram. Voronoi diagrams are a partitioning of spaces
such that the area within a certain space is closer to a specified seed point than to any other. In a traditional
voronoi diagram, the seed points form a set of coordinates. We modify the seeds so that our nuclei ellipses are
used as seed points, from which a distance transform can be computed across the image. Background areas are
masked from the distance transform and a watershed method is performed on the resulting combined distance
map and mask. The result of this method serves as our estimated cell segmentation, see Figure 4(c)(f). This
method works well with or without the existence of distinct cell borders. In our future work, we plan on refining
the estimation in the event that these strong cell border cues do exist.

4. EXPERIMENTS AND RESULTS

For our experiments, we collected a total of 24 images of papillary thyroid carcinoma, 12 classified as classical
UV-PTC, and 12 classified as TCV-PTC. Several images have been obtained from the Department of Pathology
and Laboratory Medicine at the Perelman School of Medicine at the University of Pennsylvania, and others have
been obtained from various research and educational thyroid cancer publications. On the collected images, we
perform our cell segmentation algorithm and compare our method to several other cell segmentation algorithms,
including an improved watershed algorithm14 and a GMM based Hidden Markov Random Field method.15 We
present both qualitative and quantitative results that demonstrate the effectiveness of our method.

4.1 Qualitative Results

We present several qualitative results on TCV-PTC, see Fig. 5. Of particular significance is the ability of our
system to handle nuclear crowding and overlapping cell and nuclei structures. Other methods typically merge
overlapping regions together. Another advantage of our method is the ability to filter out circular regions that
do not match the color of the exemplar cells. This has the benefit of eliminating false positives that show up in
other methods, see Figure 5(b).
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Original Image Impr. Watershed14 GMM-HMRF15 Our method Cell segmentation

Figure 5. Segmentation and analysis results on TCV-PTC images. The green circles indicate detected and analyzed
nuclei by the algorithm. The yellow lines in (b) & (c) indicate regions segmented by the method, but could not be
analyzed due to irregular shape and size. Our ellipse fitting method is shown in (d). The final cell segmentation is shown
in (e) with computed borders highlighted in blue.

4.2 Quantitative Results

We perform a quantitative analysis on the percent of cells nuclei segmented from classical PTC, and TCV-
PTC, see Table 1. The ground truth is provided by manual annotation. Again, we are able to see through the
quantitative results that our nuclei localization is fairly robust and accurate as compared to other methods. We
attribute most of the success in our ability to segment overlapping structures.

For the nuclei that are correctly localized, we do a further quantitative analysis of our cell segmentation
method. Ten percent of the cells are randomly selected and analyzed against manual ground truth to measure
the accuracy of the length-width cell ratio. For TCV-PTC, we are able to compute the difference of the length-
width ratio to the ground truth (where closer to zero difference is ideal) with a ratio accuracy of 0.506± 0.657.
For UV-PTC we can compute the length-width ratio with an accuracy of 0.310± 0.262. This result is consistent
with the nature of TCV-PTC versus UV-PTC as the tall cell variant has a much more variable length to width
ratio.



Method Type % acc. nuclei Type % acc. nuclei
Imprv. Watershed14 UV-PTC 58.82% TCV-PTC 65.98%

GMM-HMRF15 UV-PTC 49.74% TCV-PTC 52.59%
Our Method UV-PTC 77.94% TCV-PTC 83.78%

Table 1. Accuracy of several methods when counting nuclei, UV-PTC and TCV-PTC. The percentage is calculated by
comparing the output of the method and manually annotated ground truth.

5. CONCLUSION AND FUTURE WORK

Our segmentation and analysis framework for TCV-PTC is the first stage in our computerized understanding of
TCV disease pathology. Our method automatically segments nuclei and cells in histological images of papillary
carcinoma. We first find the exemplar nuclei and use these nuclei as a guide for finding the remaining regions
of interest in an image. With the localized nuclei, our method finds the approximate cell borders by a modified
voronoi diagram and analyzes the cells for their length-width ratio.

A recent study assessing 43,738 patients has found a 158% increased incidence of TCV diagnosis, as compared
to a 60.8% increase in classical PTC.10 Thus, it is increasingly important that automatic, computerized methods
are available to support the clinical decision making process. Additionally, given an accurate and granular cell
analysis, our future work will look at additional statistical analysis and regression on patient prognosis to find a
mathematical model that might be able to correlate cell characteristics to patient outcome.
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