Learning Spiking Neural Network Models of Drosophila
Olfaction

John Carter*
Department of Computer Science
Drexel University
jmc683@drexel.edu

Vikas Bhandawat

Department of Biomedical Engineering

Drexel University
vikas.bhandawat@drexel.edu

ABSTRACT

We present research in the modeling of neurons within Drosophila
(fruit fly) olfaction. We describe the process from data collection, to
model creation, and spike generation. Our approach utilizes com-
putational elements such as spiking neural networks that employ
leaky integrate-and-fire neurons with adaptive firing behavior that
more closely mimick biological neurons. We describe the methods
of several learning implementations in both software and hard-
ware. Finally, we present both quantitative and qualitative results
on learning spiking neural network models.

CCS CONCEPTS

+ Computing methodologies — Machine learning algorithms;
Modeling methodologies; - Hardware — Neural systems.

KEYWORDS

neuro-inspired artificial intelligence, machine learning, spiking
neural networks, olfaction, neuromorphic computing

ACM Reference Format:

John Carter, Jocelyn Rego, Daniel Schwartz, Vikas Bhandawat, and Edward
Kim. 2020. Learning Spiking Neural Network Models of Drosophila Olfac-
tion. In International Conference on Neuromorphic Systems 2020 (ICONS 2020),
July 28-30, 2020, Oak Ridge, TN, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3407197.3407214

1 INTRODUCTION

In the past several decades, we have seen tremendous progress in
understanding the connectivity between neurons in the brain, in
developing methods to record from neurons in awake behaving
animals, and in perturbing neural circuits to assess brain func-
tion. Despite this progress, we do not understand the ability of the
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Figure 1: Illustration of the Drosophila Olfactory system. We
focus on recorded activity from the first and second order
neurons, i.e. Olfactory Receptor Neurons (ORNs) and the
Projection Neurons (PNs), after neuronal stimulation. We
then learn the synaptic weights of the connections between
the first and second order neurons through various statisti-
cal and neuromorphic approaches.

nervous system to learn the structure of the world as the animal
observes and interacts with it. Without this knowledge, we are not
able to explain or replicate an animal’s ability to perform a large
suite of behaviors, ability to learn new behaviors, and ability to
adapt on the fly.

In an effort to advance knowledge in the mechanisms of low level
perception, we investigate and model neurons of Drosophila (fruit
fly) olfaction, see Figure 1. We observed the neural architecture of
these circuits and aimed to replicate an in-silico architecture that
resembles these circuits. We utilized biologically plausible com-
putational elements such as spiking neural networks that employ
leaky integrate-and-fire neurons with adaptive firing behavior that
more closely mimicked the biological neurons. We describe several
learning implementations of first and second order neurons to infer
representations that support subsequent processing tasks. Since
our data inputs and outputs are measured and accurately defined,
our networks can be trained using high-fidelity data.

2 BACKGROUND

Our research employs odor-tracking in Drosophila (fruit flies) as
a model to understand brain function. Odors are dispersed by the
turbulent flow of air; the spatial and temporal distribution of odor is
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Figure 2: 10 spike trains collected from the ORN neurons.
The recorded time is 20 seconds, with the onset of the stim-
ulus at 8 seconds lasting for 500 ms.

highly dynamic and is therefore unpredictable. This task represents
exactly the kind of task that animals excel at, and the exact process
and mechanisms are not well understood. Furthermore, although
modern day artificial intelligence and machine learning have neuro-
inspired foundations, much of the functions of biological neurons
have been oversimplified [8]. We investigate the anatomy and phys-
iology of the olfactory system in Drosophila for several reasons - it
is at a scale that can be modeled in computational models, and the
mechanisms and architecture are observable at the neuronal level.
Genetic tools are already in place to both assess neural function
and to perturb circuits in the brain. Thus, the overall goal is to un-
derstand the basis of odor-tracking in the fly brain, and rigorously
test this understanding by creating a realistic in-silico model.

Our research laboratory has built a novel apparatus in which
flies are exploring a circular arena 0.5 meter in diameter. Odors
were delivered with a olfactometer producing a continuous stream
of air directed over the fly. Ultimately, we plan to perform in vivo
imaging and physiology from three olfactory circuits in the fly
brain - antennal lobe, mushroom body and lateral horn to assess
the role of these circuits in naturalistic behavior. Because the flies
are being tracked in real-time, we plan to use optogenetics in the
future (a method whereby light is employed to activate a geneti-
cally defined population), whereby their olfactory neurons can be
stimulated in arbitrary spatial and temporal patterns based on real-
world measurement of odor dispersion, and we can assess how a fly
adapts its behavior. For the purposes of this research experiment,
we focus on modeling the first and second order neurons (ORN and
PN) on neuromorphic software and hardware. We collect and show
10 example ORN recordings in Figure 2, and 10 PN responses.

3 METHODOLOGY

In this section, we briefly describe the methods on the data collec-
tion process from the Drosophila brain. Next, we will describe a
series of neuronal models that we created, that gradually increase in
function and complexity. We delineate the process and parameters
used to create these models in neuromorphic software and hard-
ware platforms. Finally, we describe the experimentation procedure,
and report both quantitative and qualitative results on modeling
the behavior of the first and second order neurons.

3.1 Data Collection

Olfactory Receptor Neurons (ORN) Recordings - Flies were
immobilized in the trimmed end of a plastic pipette tip. A reference
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electrode filled with Drosophila saline was inserted into the eye, and
a sharp saline-filled glass capillary (tip diameter < 1m) was inserted
into a sensillum. Sensilla were visualized using an Olympus BX51WI
microscope with a 50x air objective. Sensillum types were identified
based on their morphology and their characteristic responses to a
panel of odors [5, 6]. Voltage signals were acquired with an A-M
Systems Model 2400 amplifier. Signals were low-pass filtered at 2
kHz and digitized at 10 kHz and the final ORN spikes were detected
off-line using routines in IgorPro (Wavemetrics).

Projection Neurons (PN) Recordings - Whole-cell recordings
from PNs were performed in vivo as previously described [3, 13, 14],
using an internal patch-pipette solution. Voltage recordings were
obtained with an A-M Systems Model 2400 amplifier in the current
clamp mode and signals were low-pass filtered at 5 kHz and digitized
at 10 kHz. An Olympus BX51WI microscope with a 40x water-
immersion objective, IR-DIC optics, and a fluorescence attachment
was used to obtain recordings under visual control. One neuron was
recorded per brain, and the morphology of each cell was visualized
post hoc with biocytin histochemistry.

Olfactory Stimulation - Odors were diluted in paraffin oil at a
ratio of 1:100. Odors were delivered with a custom-built olfactome-
ter. A continuous stream of charcoal-filtered air (2.2 I/min) was
directed over the fly. Switching of a three-way solenoid redirected
200 ml/min of this air through an odor vial, which rejoined the air
stream 12 cm from the end of the odor tube. Thus, all odors were
diluted 10-fold in air just before reaching the fly. The odor tube
was 8 mm in diameter and terminated 8 mm from the fly.

3.2 Rate Coded Models

It is known that learning the parameters of a neural network model
using spiking data is a difficult endeavor. The main reasons for
this are that spike activations are non-differentiable, and occur
with sparse frequency. Thus, our first, more simplistic models are
based upon learning on rate codes instead of on the spike train data
directly. The data analyzed in our research consisted of spike times
of ORNs and PN in response to two different odors. Spikes were
recorded from ORNs and PNs over ten 20-second trials. Odor was
presented at the 8 second mark. First, we transformed this data,
which was initially represented by timestamps of spikes, into bins
of spike counts. We summed the number of spikes in bins of 50
milliseconds, with an overlap of 25 milliseconds. This resulted in
each trial being represented as an array of 800 spike counts.
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Figure 3: Histogram showing the average rate code (num-
ber of spikes) in projection neurons (PN) over 20 seconds,
binned into 800 time segments.
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Shown in Figure 3 is a visualization of the average PN activity,
with the number of spikes indicated by the y-axis, and the time bins
indicated by the x-axis. The largest number of spikes appear soon
after odor onset, at about the 8-second mark, as shown around the
350th bin.

Gaussian Generalized Linear Model - A Generalized Linear
Model (GLM) is a class of linear regression models that contain re-
sponse variables that can have different error distribution models. A
GLM is composed of a linear predictor, a link function that describes
the relationship between the mean and the linear predictor, and
a distribution that fits the dataset. The Generalized Linear Model
has been shown to be an effective tool for modeling statistical rela-
tionships in data [12]. GLMs have been particularly successful in
modeling the activity of a neuron’s reaction to a sensory stimulus.
Furthermore, a GLM can represent a variety of factors of a spike
train to probabilistically model spiking activity [7].

Using the rate coded data, we modeled our data using a Gaussian
GLM (this is identical to the ordinary least squares linear regression
model). This linear regression model mapped ten ORNs to each
of our ten PNs. The coefficients from these ten models were then
averaged together, which resulted in ten coefficients representing
the average impact of each ORN on the activity of a PN.

Poisson Generalized Linear Model - Poisson GLMs resolve
the flaws of general linear models where the range of the model
is restricted and the variance depends on the mean. The Poisson
distribution is a commonly used statistical distribution and is of
the exponential family. A Poisson distribution can be used within a
GLM and is often referred to as a Poisson regression model. The
linear predictor of a Poisson regression model is simply just the
linear combination of an explanatory variable and a bias term.
The link function within this type of model is the canonical logit
link function. Lastly, the probability distribution that generates
the observed variable in this type of model is appropriately the
Poisson distribution, which has a single parameter to represent
both the mean and standard deviation of the distribution. In a
study analyzing how olfactory cells affect coding of stimuli, GLMs
modeled olfactory cells activity better than a simpler model that
did not include spike history effects [11]. Additionally, the work
presented that for all neurons the GLM fits were better than the
linear-nonlinear-Poisson (LNP) models [11].

For this model, we used Poisson regression with a log link func-
tion to model the effect of the binned spike counts of ten ORNs on
the spike counts of each PN. We constructed a GLM for each of the
10 PN trials, mapping the ten ORNSs to each PN. We then averaged
the resulting coefficients of the models to predict the spike counts
of a PN. The Poisson GLM was mostly successful in predicting
the actual values for the PNs, especially in anticipating the large
increase in spikes around bin 350.

3.3 Spiking Neural Network Models

In this section, we move away from the rate coded models and learn
directly on the spike input. We describe two neuromorphic imple-
mentations that utilize local learning rules to inform the synapse
connections between the ORN and PN neurons.

Neural Engineering Framework - In the field of neuroscience,
the Neural Engineering Framework (NEF) is a set of principles that
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can be used to build large-scale networks of single-neuron models
which enforces biological constraints, which are detailed in [1].

Nengo is a software module that is used to simulate models based
on the NEF principles. We used a Nengo model to learn according
to a biologically plausible supervised learning rule frequently used
with the Neural Engineering Framework (NEF) called Prescribed
Error Sensitivity (PES). The PES rule adjusts connection weights
between populations of neurons to minimize an external error
signal over time. The PES learning rule on decoders is represented
in equation 1 where ej are the encoders of the “post” population,
K is a scalar learning rate, n is the number of neurons in the “pre”
population, and g; is the gain of the “post” population.

Nengo provides functionality to developers to configure each
neuron in their networks to be sensitive to a direction in the n-
dimensional space and can be parameterized by a floating-point
number. In addition, the encoder aids in the PES learning rule
analogous to backpropagation such that an individual synaptic
connection weight is adjusted by mapping a global error signal to
its local error signal. This mapping is computed by imposing the
portion of the error vector space via its encoder [2].

K
Aa),'j = —Eajej - Ea; (1)

We initialize ten Nengo Nodes and present the spike trains as

input. Next, the ten Nodes representing the ORNs are all connected
to a single Adaptive LIF neuron, which represents the PN. This
model attempts to learn the connection weights of the ten ORNSs to
the single PN via PES and its error is measured by the difference of
the simulated PN and the observed PN. All neurons are configured
such that their encoders are set to 1 and their intercepts or the
point along each neuron where its activity is zero is set to 0.5.
Additionally, we used Nengo’s Adaptive spiking version of the
Leaky Integrate-and-Fire (LIF) neuron model that works similar
to the LIF model, but has an adaptation time constant of tau, =1
and an adaptation increment of inc, = 0.5, which is how much the
adaptation state is increased after each spike. Lastly, we define the
presentation time of the input to be 0.001 seconds and the synapse
used to filter the connections with a 0.1 second delay.
Loihi Hardware Model - Intel’s Loihi is the latest chip released
for research in 2018 [4]. Loihi is a manycore spiking neural network,
where a single chip contains 128 neuromorphic cores, 128k neurons,
128M synapses. The chip is fully asynchronous, fully digital, and
deterministic. At any given time, the neurons may send out a spike
to its neighbors by use of virtual synapses. Neurons have two inter-
nal state variables - a synaptic response current, a weighted sum
of the input spikes and a constant bias, and membrane potential
that leaks over time and will send out a spike when the potential
crosses the firing threshold. Once enough spikes accumulate and
exceed some threshold, a spike message is generated and sent to
other connected neurons. This chip is programmable using the neu-
romorphic software development kit (Nx SDK) for use in hardware
accelerated, low power neuronal applications [9].

Our network is built using three primary objects: compartments,
spike generators, and learning rules. Compartments in Loihi are
the basic building blocks of the spiking neural networks. The com-
partment voltage integrates the bias current and when it exceeds
a specified membrane potential, it produces a spike. The voltage
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Figure 4: Spike trains of a simulated PN generated from all different models using 10 observed ORN as inputs to the system.
The spikes shown from each of the methods are randomly generated from the parameters of the model.

then resets and the integration process begins again. We can also
specify that the voltage decay over some time constant to simulate
the behavior of a leaky integrate and fire neuron (LIF). For the time
being, we only create excitatory connections within the model.

Input spikes are injected into the system using built-in spike gen-
erators. The spike generator is an object that can generate spikes
by some algorithm, through a sensor, or in our case, spike trains
extracted from the Drosophila ORNs. We create a more adaptive
version of the leaky integrate and fire neuron by modulating the
activity range homeostasis. Thus, the membrane threshold of the
compartment becomes a function of its firing activity, see Figure 5.
As the membrane activity increases over a specified max activity
level, the membrane threshold will adapt to prevent the compart-
ment from firing.

The synapse weights connecting the ORN to PN neurons are
learned using a pairwise STDP rule of the following form.

W(t+1) = W(t) = A_xo()y1(t) + Avx1(t)yo(t) )

Where the weight,W, at time=t+1 is updated by the x and y, pre and
post synaptic spikes, respectively. This model is able to reproduce
key features of long term potentiation and depression.

4 EXPERIMENTS AND RESULTS

For our experiments, we modeled the connection from 10 ORN
neurons to a single PN neuron. We learned the weights of these
connections using the different models as described in our method-
ology. Given the learned weights, we then simulated spike traces
from the models and compared these spike traces to actual PN spike
trains collected from the Drosophila cells.

In Figure 4, we show an example spike train generated from all of
the different methods. We also show two trials of PN data collected
from the fruit fly. These two ground truth spike trains illustrate
the variability that exists within real world recordings of the same
stimulus. In order to quantify these results, we use a measure of
spike synchrony called the inter-spike interval metric [10]. The ISI
distance quantifies information from the interspike intervals by
evaluating the ratio of the instantaneous firing rates. We normalize
the value between 0-1, where 0 means perfectly synchronous. We
show the ISI measure between spike trains in Table 1. As a baseline,
we show the average ISI between all PNs in the first row, and of
two ground truth PNs in the second row.
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Figure 5: Adaptive voltage threshold of the Loihi model. The
rapid spiking behavior of a neuron increases the voltage
threshold, inhibiting the neuron from firing for a period of
time.

Method 0-8s 8-9s 9-11s 11-20s
Average of All PNs 0.656 0.464 0.122 0.123
Observed PN A to B 0.675 0.521 0.104 0.110
Linear Regression 0.678 0.663 0.640 0.767
Poisson GLM 0.703  0.672 0.633  0.853
Nengo Adaptive LIF 0.612 0.670 0.704 0.776
Loihi Non-Adaptive 0.700  0.686 0.703  0.879
Loihi Adaptive 0.623 0.642 0.352 0.796

Table 1: Spike ISI similarity between methods at different
times during the trials. Lower values indicate better syn-
chrony.

5 CONCLUSION

In conclusion, we investigated several learning implementations of
gradually increasing biological plausibly for modeling Drosophila
(fruit fly) olfaction ORN and PN neurons. We present both quan-
titative and qualitative results on learning rate coded and spiking
neural network models. Our data shows that most methods model
the spike train well during the pre-stimulus (0-8 seconds) time, and
during the presentation of the stimulus (8-9 seconds). The adap-
tive Loihi implementation greatly outperforms the other methods
during the time of adaptation (9-11 seconds) due to activity range
homeostasis.
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