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Abstract—One of the most important cues for human commu-
nication is the interpretation of facial expressions. We present a
novel computer vision approach for Action Unit (AU) recognition
based upon a deep learning framework combined with a semantic
context model. We introduce a new convolutional neural network
training loss specific to AU intensity that utilizes a binned cross
entropy method to fine-tune an existing network. We demonstrate
that this loss can be more effectively trained in comparison to
an L2 regression or naive cross entropy approach. The results
of our binned cross entropy neural network are then passed to
our semantic model, which utilizes the co-occurrence of action
units for improved binary and real valued classification. Through
our qualitative and quantitative results, we demonstrate the
improvement of our framework over the current state-of-the-art.

I. INTRODUCTION

In 1977, Albert Mehrabian postulated that our words (the
literal meaning) accounts for only 7% of our overall message
[1], and in fact most of our communication spectrum resides
in the nonverbal space. Our body language, facial expressions,
and tone all contribute more to human communication than
the literal meaning of our words. In order to design more
intelligent and responsive computers, machines will need to
learn how to observe human behavior and infer their intent
and emotional state through their interactions and facial ex-
pressions. Computer vision research has been using the Facial
Action Coding System (FACS) to quantitatively categorize
facial activity [2]. By recognizing the Action Units (AUs) that
correspond to facial muscle motion, one can develop a system
to recognize the emotion of a user through a combination of
these AUs, see Figure 1 for several examples. Images encoded
with AUs typically contain a label for the existence of a certain
AU, as well as an intensity label that ranges from A-E, where
“A” indicates the weakest trace of the presence of an AU
and “E” is the maximum intensity. Computers can be trained
to classify these AUs and intensity values through machine
learning techniques.

In the past several years, a new machine learning tech-
nique has shown promising results in modeling complex com-
puter vision systems e.g. deep convolutional neural networks
(CNNs) [3], [4]. These networks have shown impressive im-
provements over existing methods when trained by massively
multicore GPUs on millions of generic images [5]. However, in

Fig. 1: Example faces from the CK+ database [6], [7] (row 1) and the UNBC-
McMaster Pain archive [8], [9] (row 2) with a subset of activated AUs
visualized. The approximate AU location is represented by a red bounding
box determined by facial keypoints. c©Jeffrey Cohn

our scenario, we do not have access to millions of AU labels
and intensity measurements since obtaining these labels are
both extremely time consuming and require specific observer
training. In our work, we describe a new AU classification
approach for utilizing semantic CNNs in smaller scale clas-
sification tasks, while simultaneously maintaining the benefits
of the large training data corpus. Our method is unique in
FACS classification and our contributions are two fold:
• We transform the issue of solving a real valued multi-AU

intensity L2 regression problem to a binned cross entropy
loss that can be modeled more efficiently and effectively
by CNNs.

• We demonstrate that the classification task involving the
presence and intensity of a specific AU can be obtained
from our combined semantic conditional random field
CNN model, and show the quantitative benefits of uti-
lizing our multi-label, co-occurrence approach.

We present our experiments on two standard datasets and show
notable improvement over other machine learning algorithms
that utilize state-of-the-art image features.

II. BACKGROUND AND RELATED WORK

Our work explores facial action unit recognition with
machine learning using neural networks combined with co-
occurrence relations. In this section, we will briefly review
some of the literature from both domains, with a focus on the
state-of-the-art and highly relevant prior works.



Fig. 2: Illustration of the major steps in our classification process (a)-(d). In (a), the input image is put through an alignment process to crop the face. Then
in (b) we utilize a convolutional neural network with a binned intensity loss to provide the unary potentials in a semantic CRF (c). The fully connected edge
potentials are generated from the training data and used in the final classification process (d). For experimental and validation purposes, we perform feature
extraction at different steps in the process and use these in different classification methods, illustrated by (b1).

Facial expression through FACS classification - Facial
expression analysis using facial muscle action units has been a
popular approach [10]. Minimum Average Correlation Energy
(MACE) [11] is an earlier work that uses an energy minimiza-
tion technique to facilitate target detection which we use as a
baseline for our comparisons. More recently, SVMs [12] and
Bayes Nets [13], [14] are classification techniques used for
AU recognition. Chew et al. [12] used Modified Correlation
Filters (MDF) in an SVM framework that uses only a single
hyperplane. Kapoor et al. [13] used a Bayesian Compressed
Sensing (BCS) approach that models the sparsity in the label
space to reduce the multiclass problem to a simpler regression
task. Song et al. [14] built upon this work to explicitly
utilize the co-occurrence of labels to boost the classification
performance in a framework called BGCS. Our method utilizes
a more complex machine learning framework using neural
networks and co-occurrence potentials that has several benefits
over these existing methods. Our framework naturally encodes
multiple labels for shared AU recognition and it does not
use hand-crafted image features. Rather, the relevant image
features are automatically encoded through the hidden layers
of the network and refined through a probabilistic model that
resembles Rabinovich et al. [15].

Deep learning and Convolutional Neural Networks -
Deep learning is a type of machine learning that uses an
artificial neural network with multiple hidden layers of units
between the input and output layers. Convolutional networks
are distinct in that they use a convolutional filter layer that can
process the 2D structure of images. These deep models, trained
on large scale image data sources [5] have outperformed all
other known methods in large scale challenges. AlexNet [3]
and CaffeNet [4] are two examples of high performing neural
networks with similar configurations. They contain seven
layers with an input layer, five convolutional layers, two fully
connected layers, and an output layer. The total number of
parameters of the network is 60 million. Our work builds upon
the architecture of CaffeNet for AU classification. Others have
used shallow neural networks [16] for FACS classification,
but lack the modeling complexity of deeper architectures.
Recently, a seven layer deep neural network [17] was created
for FACS recognition using a mean squared error (MSE) loss

trained on a relatively small set of images. However, because
of the small dataset, they overfit their network and in the
following sections, we additionally show that their euclidean
based loss has training difficulties and is less robust to outliers.
In contrast, our method introduces a Binned Cross Entropy
Loss, and we demonstrate that this proposed method can
alleviate these problems.

III. METHODOLOGY

For our AU recognition framework, we first create a com-
mon alignment for all the images. Then, we estimate any
missing data from the dataset, and train our neural network.
We include in the methodology a feature extraction step for
experimental comparison. We perform AU recognition using
a custom binned loss function combined with a conditional
random field. Each step is illustrated in Figure 2 and described
in detail below.

A. Dataset Alignment
The first step of our framework is to create a common

alignment for all the faces so we can more precisely train
a classifier to detect the variations between expressions. We
utilize two standard face datasets, the extended Cohn-Kanade
(CK+) face database [6], [7] and the UNBC-McMaster Pain
archive [8], [9]. Both of these datasets provide 60+ facial
landmarks that correspond to the facial interest points.

Extended Cohn-Kanade (CK+) - The extended Cohn-
Kanade (CK+) dataset consists of 593 recordings 123 subjects.
The image sequences vary between 10 and 60 frames, but only
the last frame (peak expression) has been FACS coded. The
resulting size of the database is 593 frames with AU labels
and intensity. The range of emotions expressed through this
database cover a wide spectrum, including happiness, sadness,
surprise, disgust, etc. Any missing intensity values in this
dataset are regression imputed by our framework.

UNBC-McMaster (Pain AU) - The UNBC-McMaster
Shoulder Pain Archive (Pain AU) is one of the largest
databases of AU coded videos of spontaneous facial expres-
sions. There are 200 sequences across 25 subjects and all
frames are FACS encoded with intensity labels. The sponta-
neous nature of the video, even with control over the lighting
and camera position, make this a very challenging dataset.



(a) Original image (b) Affine warped (c) Cropped

Fig. 3: Visualization of the image alignment steps taken to normalize the data.
The original image (a) is first affine warped to a base shape shown by the
face keypoints in (b). The 68 keypoints are shown, where only the first 31
(displayed in red) are used for the affine warp. The image is then cropped
and contrast stretched for the final face (c).

Alignment - Given a 68 keypoint model of the input face
obtained through manual or automatic means, we compute
a mean face shape across the entire dataset and align each
individual face to the mean shape through an affine warp
of the outer 27 keypoints of the face and 4 keypoints of
the nose bridge, see Figure 3 for details. We did not use a
full 68 keypoint warp, as it could distort the facial muscle
activations. A contrast stretch is then applied to the image, and
the resulting face is used for the feature extraction step. Each
image is represented in RGB space and resized to 227x227
pixels. Grayscale images are augmented to RGB color by
repeating the intensity channel over each color channel.

B. Feature Extraction (for Comparison)

One of the key benefits of deep architectures is the au-
tomatic feature extraction capability, where no hand-crafted
features need to be computed from an image. However, for
evaluation purposes, we compare against two feature extrac-
tion methods that have shown good success in the literature.

PHOG features - The first descriptor we extract is a
pyramid histogram of oriented gradients, PHOG [18]. The
PHOG descriptor represents the local image shape and its
spatial layout. To extract the PHOG descriptors from an image
or image region, we first compute the gradient response using
a sobel edge filter. If we use an 8 bin orientation histogram
over 4 levels, the total vector size of our PHOG descriptor for
each image is 680 bins.

CNN codes - CNN codes image features extracted from
a convolutional neural network output on an internal layer
of the network. Our approach is to remove the last fully
connected classification or regression layer and use the 4096
dimensional vector activation outputs as the image feature.
These activations are thresholded at zero by a ReLU activation
function and are obtained for both training and testing in a
separate classifier (like a Linear SVM). These codes have
shown extraordinary potential for transfer learning on novel
tasks [4].

C. Convolutional Neural Network

Building a convolutional neural network is a data intensive
and time consuming task. For example, CaffeNet [4], the
seven layer architecture that we utilize for our task, takes
several weeks to train on the ImageNet [5] database, even

using multiple GPUs. Since our deep neural network contains
60 million weight parameters, it is essential to have enough
data to train the network without overfitting. But in our
scenario, we only have hundreds or thousands of labeled
faces. To still effectively use deep learning architectures, we
turn to a different approach called “fine-tuning” [19]. Fine-
tuning a network involves taking an existing deep neural
network that has been pre-trained using millions of images
and initializing our new network parameters with those given
weights. We then replace the last fully connected layer with a
new, uninitialized parameter layer and modify the number of
outputs to 10, which is equal to recognizing the specified AUs
in our classification task. The other layer weights from layer
1-6 in the network remain virtually stable from the previous
training on ImageNet. Slight modifications of the weights in
the early layers are enabled by a small fractional learning rate
of 0.01× base learning rate. The other parameters for fine-
tuning the network are: base learning rate = 0.001, gamma
= 0.1, momentum = 0.9, weight decay = 0.0005, over 2000
iterations. Our final architecture is an seven layer network with
a 227x227x3 input layer, five convolutional layers, two fully
connected layers, and a 10 node output layer. The internal layer
sizes and filters mimic CaffeNet. With this configuration, and
a mini-batch size of 200 samples, we can fine-tune a network
in 40 minutes on a Tesla K40 GPU.

D. Data Augmentation - Intensity Imputation

In certain scenarios, we are given only partial data necessary
for training our model. For example, in the CK+ dataset, the
binary labels for the various AUs exist; however, in 78% of
the cases, their intensity levels are partially labeled or not
provided. We could simply ignore this partial information, but
noticed a drop of about 3% on our final binary evaluation
metrics. It is especially important to utilize all the data that
we can when using data-hungry machine learning methods.
Therefore, to incorporate this information, we need a princi-
pled method of filling in the absent data, i.e. multiple linear
regression imputation.

Given the full data samples that have both AU and intensity
labels, we can perform a multilinear regression, and based
upon the predictors, compute the coefficients of the AU
variables. We describe in our experiments that we isolate the
dimensionality of our AU set to 10. These 10 AUs become our
predictors, and the responses are the intensity of the AUs. For
a set of labeled AUs in the dataset that do not have intensity
values, we can now estimate the floating point values through
multiple (3) regression imputations and average the result.
Because our framework requires integer intensities, we round
to the nearest intensity number (<= 5) and use this as our
final imputed data.

E. Loss Function

One of the most critical pieces of any machine learning
algorithm is choosing the correct loss function. In the AU clas-
sification task, there can be more than one positive output label
e.g. AU 1, 2, and 25 and AUs can be simultaneously activated.



Fig. 4: The training loss on a single fold the CK+ dataset using three loss
functions, L2 euclidean loss, naive cross entropy, and the binned cross entropy.
The average binned cross entropy is the mean of the five binned AU training
loss values over 2000 mini-batches of 200 samples.

Also, AU classifications can be real valued intensities, falling
in the range from 0 to 5. Thus, the most logical approach
to solving this problem would be to use an L2 euclidean
regression loss, similar to [17].

Real Labeled Intensity L2 Regression - Using a regression
loss, the network is able to estimate the real valued intensity
of an AU. The L2 (euclidean) loss, L, is defined as,

L =
1

2N

N∑
n=1

‖ŷn − yn‖2 (1)

where n is a label in N training labels, ŷ ∈ [−∞,+∞] are the
predictions from the last layer and y ∈ [0, 5] are the output
intensity labels. Although logically and theoretically sound,
minimizing L2 loss is much harder to optimize in practice
than a more stable alternative. Intuitively, one can understand
why this task is difficult as the L2 regression is attempting to
output exactly one correct value; whereas in other losses, the
magnitude of the predictions are what determines the output
and the precise score is not as important. Another problem
is that L2 losses are also less robust to outliers which may
introduce very large gradients in training.

Multi-label, Naive Sigmoid Cross Entropy Loss - A
second approach to the problem that has a more stable loss
and can elegantly handle multiple simultaneous activations is
the the sigmoid cross entropy loss. In the standard case of
multi-label classification, y is the label indicating that the AU
exists in the image and y is binary, y ∈ {0, 1}, then we define
the cross entropy loss, L, as the following equation,

L =
−1
n

N∑
n=1

[yn log ŷn + (1− yn) log(1− ŷn)] (2)

where ŷ represents the sigmoid function, ŷ = 1
1+ew ∈ [0, 1]

and w represents the output of the last layer of our network,
w ∈ [−∞,+∞].

However, our application is not standard because we have
real valued labels that represent the intensity of the AU present
in the face image. Thus, a naive approach of using the sigmoid

cross entropy loss is to use a new y ∈ [0, 1], and map the
intensity values to this range. An AU intensity of 5 would
map to 1, 4 would map to 0.8, 3 would map to 0.6, etc.
Although numerically, the gradient during back propagation
will be computed correctly from a sigmoid calculation, the
training loss will fail to converge due to the network’s inability
to accurately target non-binary labeling schemes, see Figure
4 for an illustration of the problems with both L2 and naive
cross entropy losses.

Binned Cross Entropy Loss using Imputed Intensity -
We propose a solution that overcomes both the instability of
L2 regression and the non-binary labeling issue in the cross
entropy loss by quantization e.g. BinCNN. For each intensity
level, I , we threshold that intensity level and intensities greater
than the threshold to a binary intensity mask, Î . Originally, we
had only masked out a specific intensity; however, that turned
out to be much too constrained. For this reason, we include any
intensity above the threshold. Mathematically, this is simply
represented as,

Î =

{
1 if I >= t

0 if I < t
(3)

where t is a threshold value from 1 to 5. For each intensity
mask, we fine-tune a neural network with a standard binary
sigmoid cross entropy loss. Intuitively, one can think of this
binned process as building five classifiers, one for each thresh-
olded intensity level. For our classification task, we combine
the sigmoid output results of the five CNNs into a final output
which is a maximum over the five outputs. For example, if
the outputs of the CNNs are, ρ = {o1, o2, o3, o4, o5}, then
the final output is final = max(ρ), where final ∈ [0, 1].
The training loss of the five binned CNNs and the average of
these losses can be seen in Figure 4.

F. Semantic Context Model using FACS Co-Occurrence

The results of the binned cross entropy method are passed to
our semantic context model (SBinCNN). Our model is able to
refine the results from the neural network by utilizing a fully
connected probabilistic conditional random field (CRF). The
unary potentials of the CRF are defined by the neural network,
and the pairwise potentials are computed by estimating the
parameters that maximize the likelihood of the training data.
The general form of the semantic context model for a given
image, Im, is the following,

p(f1 . . . fn|Im) =
1

Z
E(f1 . . . fn)

|N |∏
i=1

p(fi|Im) (4)

where fn∈N are the AUs being classified, p(fi) are the unary
potentials obtained from BinCNN, Z is the normalization
(partition) constant, and E(·) is the edge interaction function
defined by,

E(f1 . . . fn) = exp(

|N |∑
i,j=1

weφe(i, j)) (5)



TABLE I: Description of the 10 Action Units (AU) we used from the Facial
Action Coding System.

AU Definition AU Definition
1 Inner brow raiser 12 Lip corner puller
2 Outer brow raiser 15 Lip corner depressor
4 Brow lowerer 17 Chin raiser
6 Cheek raiser 25 Lip apart
7 Lid tightener 26 Jaw drop

(a) CRF CK+ (b) CRF PainAU

Fig. 5: Visualization of the pairwise edge potentials of a training data partition
on our datasets computed by maximum likelihood estimation.

In this equation, we is a weight parameter for the specified
edge, and φe(·), are the edge interaction potentials computed
from the training data. A value (i, j) in the edge potential
matrix, see Figure 5, represents the strength of the relation-
ship between AUs. The final partition function and marginal
probability of each AU can be computed by exact inference.

IV. EXPERIMENTS AND RESULTS

We perform two sets of experiments, intensity classification
(strength of the AU), and binary classification (presence or
absence of the AU). The 10 AUs we considered are the
following, {1,2,4,6,7,12,15,17,25,26} and their descriptions
can be seen in Table I.

A. Intensity Level Classification

Our first experiment we are classifying the intensity of the
10 AUs on our datasets. The intensity level has a range of
0-5, where 0 indicates that the AU is not present and 5 is the
maximum activation of the AU. We compare our SBinCNN
measure against a standard off-the-shelf CNN, as well as the
BinCNN that does not incorporate our semantic context model.
For the CK+ dataset, we can compute the L2 distance from
the ground truth (non-imputed) AU intensity to our predicted
results. The L2 distances are as follows: SBinCNN is 30.63,
BinCNN is 39.72, and CNN is 40.75 (where lower is better).
Similarly for the Pain AU database our L2 distances on a
randomly sampled set of 1000 images from ten subjects are
as follows: SBinCNN is 68.54, BinCNN is 77.13, and CNN
is 78.21. Similar to our SBinCNN quantitative improvements,
qualitatively, our method more closely matches the ground
truth labels, see Figure 6.

B. Binary Classification Experiments and Evaluation methods

For the next set of experiments, we perform a binary
classification for fair comparison against the state-of-the-art
[13], [14], [12]. We compare our method, SBinCNN, with

(a) Binary Labels (b) Ground Truth Inten-
sity Labels

(c) Ground Truth with
Intensity Imputation

(d) Results CNN (e) Results BinCNN (f) Results SBinCNN

Fig. 6: Label intensity matrices for the CK+ dataset and results of our methods.
Our SBinCNN results (f) are more in line with the ground truth (b) and ground
truth imputed intensity labeling (c) (view in color).

other recent works using the evaluation metrics, precision,
recall, and the f1 measure defined as f1 = 2∗ precsion∗recall

precision+recall .
In Table II, the SVM-PHOG and SVM-CNN are custom

matlab implementations of a single label AU SVM classifica-
tion using the PHOG and CNN code features. 10 SVM models
are created for the 10 different AUs. The reported results are
obtained by a 10 fold cross validation on the CK+ dataset, and
a leave-one-subject-out validation on the Pain AU dataset.

For the MCF [12] method, we use the published results of
their algorithm obtained from [12] on this dataset. Because
only the f1 scores are reported, we are do not have the
precision and recall scores for this method. For BCS [13]
and BGCS [14], we use the publicly available code for the
methods and perform a similar 10 fold cross validation to
obtain our final posted results. These methods use the PHOG
image feature by default. We also experimented with simply
replacing the PHOG feature in the BGCS framework with the
CNN codes to see how this affects performance. We report
the results of this experiment as the BGCS-CNN method.

Lastly, we present the results of our fine-tuned SBinCNN
method which uses our proposed binned cross entropy loss
and semantic context model. Our architecture is a fine-tuned
seven layer neural network trained using stochastic gradient
descent on a 10 fold cross validation partitioning scheme, see
Table II and Figure 7.

V. DISCUSSION AND CONCLUSION

Our results show that our SBinCNN method is able to
outperform all of the experimental methods and state-of-the-
art in both datasets. And as predicted, the CNN codes are able
to improve existing classification methods when compared to
hand crafted features like PHOG. It is also apparent from
our results that models which can take advantage of the co-
occurrences of AUs have substantial benefits over single label
classifiers.



TABLE II: Precision, recall, and f1 scores for two datasets, CK+ and the UNBC-McMaster (Pain AU) dataset. Our Semantic Binned Convolutional Neural
Network (SBinCNN) performs better than CNN codes within an existing model (BGCS-CNN, SVM-CNN), a stand alone CNN [4], standard binned CNN
(BinCNN), and other state-of-the-art methods [13], [12], [14].

Dataset Metric SVM-PHOG SVM-CNN BCS [13] MCF [12] BGCS [14] BGCS-CNN CNN [4] BinCNN SBinCNN
CK+ precision 0.70 0.73 0.67 - 0.67 0.75 0.78 0.76 0.78
CK+ recall 0.72 0.69 0.69 - 0.73 0.80 0.79 0.81 0.82
CK+ f1 score 0.71 0.71 0.67 0.76 0.69 0.77 0.78 0.79 0.80

Pain AU precision 0.34 0.41 0.19 - 0.24 0.32 0.36 0.36 0.37
Pain AU recall 0.39 0.38 0.36 - 0.40 0.55 0.53 0.61 0.67
Pain AU f1 score 0.36 0.39 0.24 0.38 0.30 0.40 0.43 0.44 0.48

Fig. 7: f1 measurements of the 10 AUs measured from the CK+ dataset. The graph displays the mean and standard deviation of the AU measurements. Most of
the f1 score improvements can be seen in low scoring AUs (6, 7, 26) where the semantic model is increasing the likelihood of the AU due to co-occurrences.

In the one case where the SVM-CNN appears to be out
performing other methods in the Pain AU dataset (see Table
II), we would like to highlight that the overall f1 score, or
harmonic mean between precision and recall, is the measure
that was maximized. One can artificially inflate the precision
by sacrificing recall, and vice versa. Thus, although the pre-
cision in the SVM-CNN is the highest among our evaluated
algorithms, the f1 score of the SBinCNN is approximately
23% higher than the maximum f1 SVM-CNN score.

In conclusion, we demonstrate the effectiveness of solving
a real valued multi-AU intensity L2 regression problem with
a novel binned loss and semantic model. We can handle
missing intensity data through a regression based imputation.
Further, we demonstrated the quantitative and qualitative ben-
efits of utilizing deep learning and semantic neural networks
(SBinCNN) towards Action Unit classification, and further,
show notable improvement over the current state-of-the-art.
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