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Abstract

We present a novel method for 3D brain tumor vol-
ume segmentation based on a parallel cellular automata
framework. Our method incorporates prior label knowl-
edge gathered from user seed information to influence the
cellular automata decision rules. Our proposed method is
able to segment brain tumor volumes quickly and accurately
using any number of label classifications. Exploiting the in-
herent parallelism of our algorithm, we adopt this method
to the Graphics Processing Unit (GPU). Additionally, we
introduce the concept of individual label strength maps to
visualize the improvements of our method. As we demon-
strate in our quantitative and qualitative results, the key
benefits of our system are accuracy, robustness to complex
structures, and speed. We compute segmentations nearly
45x faster than conventional CPU methods, enabling user
feedback at interactive rates.

1 Introduction
Reliable image segmentation is an important yet chal-

lenging task in medical image analysis. Fully automatic
methods of segmentation can produce decent results; how-
ever, an entirely autonomous method can vary significantly
in accuracy. Even the ground truth segmentation in medical
imaging may differ between physicians. Therefore, interac-
tive [2, 9, 5, 11, 7, 6] segmentation methods have increased
in popularity. The Graph Cut [2] method attempts to solve
the min cut/max flow problem. Snakes [6] and Level Sets
[9] are active contour methods that evolve a curve based
upon geometric and image constraints. For the problem of
brain tumor segmentation, Lefohn et al. [9] implemented a
level set solver on the GPU. Quantitative results of this level
set formulation compare well with hand contouring results.
Kaus et al. [8] used an atlas and statistical information to
segment brain tumors. Cates et al. [3] used a hierarchical
watershed segmentation method where users can select and

combine catchment basin regions to produce the final tu-
mor model. Additionally, methods that allow the use of any
number of label classifications include Random walks [5],
Growcut [11], and Seeded ND Cellular Automata [7]. Ran-
dom walks has interactive properties but it scales in com-
putation time with multiple labels. Growcut uses Cellular
Automata (CA) [12] with intensity based transition rules
for image segmentation. The Seeded ND-CA method by
Kauffmann et al. uses CA to compute the Ford-Bellman
shortest path for segmentation on an older generation GPU.
Although the Growcut method and Seeded ND-CA method
seem dissimilar, Kauffmann et al. proves the equivalence
between Growcut to his method and states that their results
are identical.

No single segmentation method is suitable for all kinds
of images [4], and further, there is no general algorithm ac-
cepted to segment tumors from magnetic resonance images
[1]. We were drawn to the CA method for several reasons.
First, the CA method supports n-dimensions and m-label
categories where the number of labels does not increase
computational time or complexity. This ability makes it
suitable for simultaneously segmenting multiple brain le-
sions with complex structures. Second, for an effective
interactive segmentation, speed and usability are crucial.
Since CA is an iterative method where each cell indepen-
dently follows a set of rules, this naturally lends itself to
an efficient parallel implementation. Further, the iterative
nature of this method enables the user to interact with the
method and visualize the results during the segmentation
process. Previously proposed CA methods, e.g. Growcut
[11] and Seeded ND-CA [7], only use local voxel informa-
tion to guide their evolution, making them prone to errors
where boundaries exist.

To overcome this problem, we present an interactive
method that integrates label priors learned from the user in-
teractions in a parallelized CA. Our method allows users to
easily segment and update the segmentation of any number
of different structures in the brain. We focus on brain tumor
segmentation and make the following contributions,



1. Statistical analysis of user input seeds’ intensities to
create a global model of the intensity distribution for
each classification label. The states of the CA are in-
fluenced by this model via the newly defined cell evo-
lution rules.

2. A GPU implementation that parallelizes the automata
computation, which achieves a ∼45x speed-up com-
pared to conventional CPU methods and enables the
visualization and manipulation of 3D MRI data at in-
teractive rates.

2 Cellular Automata (CA)
The CA model consists of a grid of cells (or voxels in

our case) that influence a set of neighboring cells according
to transition or evolution rules. In our segmentation appli-
cation, some cells will be assigned labels (user seeds) and
these cells will attempt to propagate their labels to neigh-
boring cells. At label boundaries, neighbors will compete
with each other based on the transition rules. Mathemat-
ically speaking, we can define our cellular automata as a
triple, CA = (S,N, δ) where S is a nonempty set of states,
N ⊆ R3 is the neighborhood, and δ : SN → S is the lo-
cal transition rule. The area of computation is our volume,
v ∈ V ⊆ R3, where v represents a voxel in our volume.
We define our neighborhood system as the von Neumann
neighborhood (6-voxel neighborhood),

N(v) = ||v − q||1 :=

3∑
i=1

|vi − qi| = 1 q ∈ R3 (1)

where q are the adjacent voxels. The cell states for voxel
v, Sv , are defined as a 4-tuple, (lv, θv, Iv, ϕv), where lv is
the label of the current cell, θv is the strength of the cell and
θv ∈ [0, 1], Iv is the voxel intensity, ϕv is the number of
enemies (voxels that have differing labels) surrounding the
cell.

For the initialization of our method, the user paints seeds
onto a 2D slice for any number of label classifications (i.e.
foreground and background for the 2-label case) which as-
signs the corresponding label to that voxel and also inital-
izes the strength of that voxel to 1.0. All uninitialized voxels
have strength 0.0. After initialization, the label propaga-
tion iterations begin. Our basic transition rule for cell v’s
states Sv , is based on the following monotonically decreas-
ing function,

g(|Iv − Iq|) · θq > θv (2)

Where the g function is defined in the basic case as,

g(x) = 1−
(

x

max|I|

)
(3)

Where max|I| is the maximum intensity in the volume. In-
tuitively, the function g modulates how heavily the neigh-
bor, q, influences v. The more similar q’s intensity is to v’s,

the heavier q’s influence is to v. If neighbor q overpowers
v, i.e. (g(|Iv − Iq|) · θq > θv is true), then v takes q’s label
and update its strength, (lv = lq; θv = g(|Iv − Iq|) · θq).
However, if this transition rule is not satisfied, the cell state
remains unaltered. This operation is performed for each
neighbor in the 6-voxel neighborhood, and the maximum
strength label is taken as the final label classification. As
long as the monotonically decreasing property of equation
3 is maintained, the CA will converge to a steady state.

3 Methodology
The basic CA transition rules using the g function de-

fined in eq. (3) are limited to local voxel information only,
making the basic CA’s results prone to errors where bound-
aries exist and neighbors with different labels compete. In
this section, we first introduce a new modulation function
leveraging user seed interactions to reduce the local bias and
better delineate boundaries, and then show the effectiveness
of the new method through a visualization of the strength
term, θv , in our state vector, Sv .

3.1 Statistical User Seed Distribution

In our analysis of the CA algorithm, we note that the
strength term, θv , in the cell states is the central decid-
ing factor for the label determination of our segmentation.
Therefore, we can achieve a better segmentation result by
introducing prior knowledge to better control this term. We
use seed labels initialized at the start of the procedure to
estimate a Gaussian probability density function of intensi-
ties representing each label set. We calculate the mean, µl,
and standard deviation, σl, of the intensities of the user ini-
tialized seeds in each of the different labels, and use them
as prior knowledge. The transition rule in eq. (2) is fol-
lowed, as demonstrated in our Algorithm 1, but with a new
piecewise continuous, monotonous decreasing function that
is exponentially influenced by seed density distributions,
g∗(x, µlq, σlq), defined below,

g
∗
(x, µlq, σlq) =
1−

(
x

w1·max|I|

)
if |Iq − µlq| < σlq(

1−
(

x
w1·max|I|

))(
e

(
−w2·(|Iq−µlq|−σlq)

))
if |Iq − µlq| ≥ σlq

(4)

Where the notation, µlq and σlq , denote the mean and stan-
dard deviation of the label at voxel q respectively. Further,
w1 and w2 are user defined weights. Setting w1 > 1 de-
creases the effect of intensity differences; whereas, setting
w2 > 1 exponentially increases the effect of intensity dif-
ferences. Here, if |Iq − µlq| < σlq , i.e. the neighboring
voxel attacking the current voxel has an intensity value that
lies within the standard deviation of its label’s intensity, it



(a) Foreground (green) and back-
ground (red) seeds.

(b) Combined strength map
at time of convergence.

(c) Individual strength
maps for g(x) (top) and
g∗(x, µlq , σlq) (bottom)
for the foreground label.

Figure 1. Case 2 from the Harvard Medical School at the Brigham and Women‘s Hospital (HBW) [8, 13]
brain tumor dataset and strength maps. In (c), the g∗(x, µlq, σlq) method better maintains the CA
strength within the tumor tissue region and exponentially drops the strength outside its statistical
range as computed by the label seeds. In this example, we set our weights, w1 and w2 to 2.0.

will follow a weighted linear penalty function. However,
if |Iq − µlq| ≥ σlq , i.e. the difference between the q’s
intensity, Iq , and mean intensity of the q’s label, µlq , lies
outside the statistical range, σlq , our method will drop the
strength of a neighboring attack exponentially. This penalty
term is shifted by σlq in order to maintain continuity at
(|Iq − µlq| = σlq).

3.2 Cellular Automata Individual Label
Strength Maps

The reasoning behind our method can be derived from
the visualization of the strength term, θv . The visualization
of this term is defined as our strength map. In the original
formulation, the maximum strength of each voxel is stored
in θv which is associated with a specific label, lv . How-
ever, if we store only the maximum strength information,
the resulting strength map is a convoluted mix of different
labels and is visually indecipherable. This is because there
is no delineation between the strengths of different labels,
see Fig. 1 (b). Conversely, by storing and analyzing the in-
dividual label’s strength map, we can qualitatively motivate
our work. For the specific example shown in Fig. 1 (c),
the individual strength map is generated for the foreground
only, and describes the strength of the foreground label
across the entire image. By visual inspection, it can be seen
that the original function, g(x), unknowingly propagates the
strength of the foreground label into different tissue classes.
In contrast, the proposed method, g∗(x, µlq, σlq), maintains
the CA strength within its own label, but then drops expo-
nentially in the other tissue classes. We present quantitative
results in section 4.

3.3 CUDA Implementation

CUDA, Compute Unified Device Architecture, is a pro-
gramming model and software environment for GPU pro-
gramming. In CUDA, the basic computational elements are
threads. A collection of threads is called a block and the
combination of all the blocks makes up the grid. Typically,
the grid covers the entire area of computation for a GPU
program (in our case, the MRI volume). A single GPU pro-
gram is called a kernel and it is the kernel that exploits the
power of the GPU.

In our implementation, we first create a 3D texture vol-
ume that contains the MRI slices. We define our grid as
the dimensions of the texture volume and launch the evo-
lution kernel, Algorithm 1. This algorithm incorporates
equation, eq. (4), and assigns new values to our cell states
from iteration t to t + 1. This method continues until the
states converge on the entire volume (label and strength);
however, typically the final satisfactory segmentation is
achieved many iterations before convergence and can be
stopped by the user.

To achieve additional speed up, we propose a narrow
band modification to improve our overall computation time.
We append a new state value to our existing 4-tuple cell
states to create a 5-tuple, (lv, θv, Iv, ϕv, fv) where fv is the
narrow band propagation value, {true, false}. This state
variable is set to true if an enemy exists in the neighbor-
hood, N(v) or if the voxel’s strength has changed from
time, t to t + 1. If none of these conditions are true, we
set the value to false and the GPU may skip the neighbor-
hood computations. Additionally, by counting the number
of enemies in a neighborhood, we can also control smooth-
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Figure 2. Segmentation process of Case 1 in the HBW database. (1) 2D stack rendering of one of the
slices of the volume. (2) Volume rendering window of the result on the foreground label highlighted
in green. Results presented at iteration 0 (a), iteration 25 (b), iteration 50 (c), iteration 100 (d), and
finally at convergence, iteration 176 (e).

ness as described in [11].
For our user interface, we present two windows: a 2D

image of the slices within the MRI volume, and a 3D vol-
ume render of the GPU texture. For the 2D image slices, the
user can scroll through the volume stack slice by slice, and
draw seed points for any label classification. After placing
the seed points, the user can execute any number of itera-
tions of Algorithm 1 and watch the CA method progress.
For the 3D volume render window, the results of the CA
method are visualized in real time. The user interface and
process can be seen in Fig. 2.

Algorithm 1 Evolution Kernel for 5-tuple Cell States,
(lv, θv, Iv, ϕv, fv)

Step 1. Check if this voxel is in the narrow band as described in Sec. 3.3. If it is,
proceed to Step 2; otherwise, skip this voxel.
Step 2. Fetch entire neighborhood, using the GPU texture, tex3D(x, y, z)
for ∀q ∈ N(v) do {for each neighboring voxel}

if ltv 6= ltq then {labels do not match}
ϕt+1
v = ϕt+1

v + 1; {increase the enemy count}
end if
if g∗(|Iv − Iq|, µlq, σlq) · θ

t
q > θtv and g∗(|Iv − Iq|, µlq, σlq) ·

θtq > θt+1
v then

lt+1
v = ltq {overpowered; take your neighbors label}
θt+1
v = g∗(|Iv − Iq|, µlq, σlq) · θ

t
q {update maximum strength}

end if
end for

4 Results
We evaluate our method using several metrics on the

Brain Tumor Segmentation Database made available by the
Harvard Medical School at the Brigham and Women’s Hos-
pital (HBW) [8, 13]. This dataset consists of ten 3D MRI
brain tumor patients specifically selected by neurosurgeons

as a representative sample of a larger database. For our re-
sults, we considered speed (both computational and opera-
tor) and validity.

4.1 Validity

As noted by Grady et al. [5] with seed based seg-
mentation methods, strict measurements of error are prac-
tically meaningless because we can arbitrarily increase our
segmentation accuracy by adding more seeds. Thus, in
our experiments, we compare our results to other methods
[2, 5, 11, 7] that have identical seed initializations. Here in
Table 1, we present the Dice overlap (DSC) [10] for one 2D
slice in each of the ten tumor cases, where each method was
given identical initializations with no further interaction al-
lowed. The seeds used for the experiment can be seen in
Fig. 3, but in the case of multiple labels e.g. case 9, only one
tumor foreground/background segmentation is calculated to
accommodate the 2-label methods. Typically, we see that
all methods perform well when the tumor boundary is easily
delineated from normal brain tissue. But when the boundary
is less defined, as in cases 4, 8, and 10, our method is able to
leverage the label intensity distributions to achieve a better
segmentation. For our method, we heuristically found that
setting our weights, w1 and w2 to 2.0 worked well across
all cases.

4.2 Computational Speed

As a tool for interactive segmentation, it is essential that
our method be able to produce results on 3D volumes effi-
ciently. Because each cell in our CA acts independently, the
algorithm can be efficiently parallelized. For our computa-
tional experiments, we compared our CUDA GPU imple-
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Figure 3. Seed initializations displayed in rows (1)&(3), and renderings of results, rows (2)&(4).
Columns (a)-(e) in rows (1)&(2) are Cases 1-5 and (a)-(e) in rows (3)&(4) are Cases 6-10. The ren-
derings of our results were obtained from one of the users in our user study, and have been rotated
and resized for optimal viewing.

Table 1. Validity comparisons on a 2D image slice from each of the ten volumes. Seed inputs were
identical for all methods and no user interactions were allowed.

DSC overlap for Cases 1- 10
Method 1 2 3 4 5 6 7 8 9 10
Graph Cut [2] 0.939 0.950 0.945 0.749 0.805 0.948 0.957 0.781 0.873 0.740
Random Walker [5] 0.930 0.949 0.951 0.672 0.887 0.930 0.958 0.725 0.873 0.707
Growcut [11] or Seeded ND-CA [7] 0.933 0.951 0.958 0.720 0.881 0.953 0.952 0.694 0.801 0.835
Our method 0.932 0.950 0.956 0.905 0.869 0.959 0.969 0.821 0.915 0.879

mentation running on an NVIDIA 280 GTX versus a CPU
implementation on an AMD 4600+ Dual Core processor.
The size of the tumor volumes are 256x256x124 and the
average number of iterations it takes for our method to con-
verge on a tumor segmentation is 191.7. If we run the seg-
mentation algorithm on the CPU, it would average 393.22
seconds to compute. In comparison, our GPU implemen-
tation takes only 8.68 seconds on average, resulting in a
45.27x speed up.

4.3 User Study on Validity and Usability

For our user study, we asked 5 participants to test our
software tool. Three of the users were experienced in read-
ing radiological data and the other two had no previous ex-
perience. These users were trained on the user interface

of the software tool and were then asked to segment tu-
mors from each of the ten cases available from the HBW
database. The participants were shown where the tumor
was in the volumes and could use our system to segment
the tumor until they were satisfied with their result. We then
recorded the time it took for these users to segment out each
tumor, the final sensitivity, P, specificity, Q, and DSC of the
entire volume, see Fig. 4 (calculations for P,Q, and DSC can
be found in [10]). Our P and Q results are consistently on
par or above those presented in Lefohn et al. [9] and Cates
et al. [3]. And although in case 9 multiple tissue lesions ex-
ist, users are able to segment labels simultaneously without
added complexity.

The average operator time of a single volume segmen-
tation on our system is 3m±2m. This is shorter than that
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Figure 4. The sensitivity, P, specificity, Q, and DSC from our user study in case numbers 1 through
10 from the HBW dataset. The graphs plot the mean and standard deviation for the entire tumor
segmentation volume gathered from five users.

of those presented in Kaus et al. [8] (5-10 minutes), Cates
et al. [3] (5-10 minutes), and Lefohn et al. [9] (6±3 min-
utes). We hypothesized a marginal speed up due to newer
hardware; however, we also achieve greater speed efficiency
from our GPU implementation and little or no time wait-
ing for processing, effectively decreasing our total operator
time across all users.

5 Conclusion
We proposed an interactive segmentation method that

enables users to quickly and efficiently segment tumors in
MR brain volumes. Our method utilizes statistical seed dis-
tributions to overcome the local bias seen in the traditional
cellular automata framework. Our results show improved
accuracy, robustness, and competitive usability. Further,
with a GPU implementation, the method produces results
at interactive rates. For our future work, we plan to work
with a greater number of brain structures and explore incor-
porating additional information to guide our CA. We would
also like to explore higher dimensional data and improve
our user interface.
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