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ABSTRACT
Our brains are, “prediction machines”, where we are continuously
comparing our surroundings with predictions from internal models
generated by our brains. This is demonstrated by observing our
basic low level sensory systems and how they predict environmental
changes as we move through space and time. Indeed, even at higher
cognitive levels, we are able to do prediction. We can predict how
the laws of physics affect people, places, and things and even predict
the end of someone’s sentence.

In our work, we sought to create an artificial model that is able to
mimic early, low level biological predictive behavior in a computer
vision system. Our predictive vision model uses spatiotemporal
sequence memories learned from deep sparse coding. This model
is implemented using a biologically inspired architecture: one that
utilizes sequence memories, lateral inhibition, and top-down feed-
back in a generative framework. Our model learns the causes of the
data in a completely unsupervised manner, by simply observing
and learning about the world. Spatiotemporal features are learned
by minimizing a reconstruction error convolved over space and
time, and can subsequently be used for recognition, classification,
and future video prediction. Our experiments show that we are able
to accurately predict what will happen in the future; furthermore,
we can use our predictions to detect anomalous, unexpected events
in both synthetic and real video sequences.

1 INTRODUCTION
Consciously and unconsciously, we are continually predicting what
will happen next. In fact, many believe that prediction plays a more
central role, or could even be one of the primary roles of the brain.
For example, take a moment to look around you. Using a combi-
nation of your senses including sight, audition, smell, and touch,
you are able understand what is happening in your immediate en-
vironment. Now close your eyes and think about what will happen
when you open your eyes a second later. Do you believe (predict)
your environment will stay the same?

“Prediction is the essence of intelligence” says Yann LeCun -
a pioneer of deep neural networks. Jeff Hawkins, founder of the
Redwood Center for Neuroscience, proposed that prediction is in-
telligence framed by understanding. Indeed, we as humans are
predicting all the time, ranging from our visual system’s ability to
expect that our environment will stay relatively constant between
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Figure 1: Frames of a video captured from a Endeavor Ro-
botics PackBot 510 at the Naval Research Laboratory. This
image sequence is used in our experiments to train the spa-
tiotemporal sequence dictionary used for prediction.

blinks, to our auditory system cringing as it awaits a loud bang
when a child pushes a pin into a balloon, to our language centers
predicting and finishing the end of people’s sentences. Perception
and understanding are governed by predictions made by the inter-
nal models of our brain. Our ability to predict and anticipate the
future helps in our understanding of the world around us including
understanding intention, planning, and finding anomalies.

In this work, we explore an artificial neural network model that
is able to mimic low level predictive behavior in a computer vision
system. Our model representations are generated using sparse cod-
ing, a mathematical technique to create a numerical code where
many of the elements are not active, e.g. zero. This representation
is consistent with evidence that shows the neural code represented
in biological perception is also sparse; in fact, a large population of
cortical neurons are “silent”, e.g. they spike rarely or do not spike
at all [10].

Our experiments were performed on both synthetic datasets and
real world datasets gathered in complex environments. Our results
show that predictive sequence memories using sparse coding can
be learned in a completely unsupervised manner. Furthermore, we
demonstrate that the spatiotemporal sequence memories can be



used to predict the immediate future in low level vision systems.
By computing and analyzing reconstruction error, e.g. the differ-
ence between the predicted outcome and the actual outcome, we
are able to detect anomalous events. For our real world data, we
collected video data from a small, autonomous robotics platforms
and analyzed the robot video around several environments at the
Laboratory for Autonomous Systems Research (LASR), see Figure 1.
Our quantitative and qualitative results show that predictive mod-
eling gives our vision system the ability to learn what to expect as
it perceives both space and time.

2 BACKGROUND
2.1 Background in Spatiotemporal Sequence

Memory
There is strong evidence that the spatiotemporal sequence memo-
ries exist in both high and low levels of biological perception. For
example, Gavornik and Bear [7] discovered that repeated presenta-
tions of a visual sequence over a course of days causes evoked re-
sponse potentiation in mouse V1 that is highly specific for stimulus
order and timing. In other words, cortical activity in V1 regenerates
a full sequence even when individual stimulus elements are omitted.
This explains how the brain is able to make intelligent guesses or
fill in details from partial visual information.

In fact, the whole cortex is continuously processing streams of
sensory data to build a spatiotemporal model of the environment.
Mauk and Buonomano [11] show through neuroimaging studies
that there is an intricate link between temporal and spatial infor-
mation in most sensory and motor tasks. Brosch and Schreiner
[4] show that sequence-sensitive neurons in the auditory cortex
are common and involved in the cortical representation of spec-
trotempral patterns of acoustic signals. Additionally, the brain is
not a passive pattern matching machine, but rather a prediction
machine, constantly generating and approximating the future. Bar
[2] suggests that perceptual information activate linked stored rep-
resentations, a kind of analogy that provides focused predictions.

Research by JeffHawkins’ group have created a theoretical frame-
work for sequence learning in the cortex called hierarchical tempo-
ral memory (HTM). HTMs are models that are able to continuously
learn a large number of variable order temporal sequences using
an unsupervised Hebbian-like learning rule. The sparse temporal
codes formed by the model can robustly handle branching temporal
sequences by maintaining multiple predictions until there is suffi-
cient disambiguating evidence [5]. Our work has similar properties
to the presented biological and theoretical frameworks; however,
we utilize sparse coding to represent the input signals and learn
the spatiotemporal sequence memories.

2.2 Background in Sparse Coding
Strong evidence demonstrates that the neural code is both explicit
and sparse [6] where neurons fire selectively to specific stimuli. Ol-
shausen [12] has shown that sparsity is a desirable property as our
natural environment can be described by a small number of struc-
tural primitives. Sparse codes have a high representational capacity
in associative memory, far surpassing the number of input-output
pairs that can be stored by a more dense code [3], and that biologi-
cally, the sparsity of neural codes are more metabolically efficient

and reduce the cost of code transmission [1]. Since the evidence
shows that the neural code represented in biological perception is
sparse, our model is governed by the principle of sparsity.

Mathematically, sparse coding is a reconstruction minimization
problemwhere many of the elements are not active, e.g. zero. Sparse
coding falls under the class of unsupervised methods as the objec-
tive function minimizes reconstruction error. The goal is to find
a set of basis vectors e.g. dictionary elements, such that we can
represent some input signal as a linear combination of these vec-
tors. Specifically, we have some input variable x (n) from which
we are attempting to find a latent representation a(n) (we refer to
as “activations”) such that a(n) is sparse, e.g. contains many zeros,
and we can reconstruct the original input, x (n) as well as possible.
Mathematically, a single layer of sparse coding can be defined as,

min
D

N∑
n=1

min
a(n)

1
2
∥x (n) − Da(n)∥22 + λ∥a

(n)∥1 (1)

Where D is the overcomplete dictionary, and Da(n) = x̂ (n), or the
reconstruction of x (n). The λ term controls the L1 sparsity penalty,
balancing the reconstruction versus sparsity term. L1 regularization
is used since it drives the coefficients of activity exactly to zero. N
is the total training set, where n is one element of training. D rep-
resents a dictionary composed of small kernels that share features
across the input signal. Sparse coding is a generative model that is
overcomplete, performing dimensionality expansion in the hidden
layer, while also forcing the coefficients to be sparse. This means
the system is underdetermined and there exists an infinite number
of possible solutions to the problem and will have to be solved
through optimization. The criterion of sparsity resolves the degen-
eracy introduced by the overcomplete basis. In fact, the process of
optimization is required to obtain the coefficients at inference time
and is thus, computationally more expensive compared to typical
feedforward architectures.

3 METHODOLOGY
For our framework, we use the Locally Competitive Algorithm
(LCA) [13] to solve the sparse coding problem. The LCA algorithm
is a biologically informed sparse solver that utilizes thresholding,
excitatory, and inhibitory connections between neurons. LCA min-
imizes the mean-squared error (MSE) with sparsity cost function
as described in Equation 1. The LCA model is governed by dynam-
ics that evolve the neuron’s internal state when presented with
some input image. The internal state, i.e. “membrane potential”,
charges up like a leaky integrator and when it exceeds a certain
threshold, will activate that neuron. This activation will then send
out inhibitory responses to units within the layer to prevent them
from firing. The input potential to the state is proportional to how
well the image matches the neuron’s dictionary element, while the
inhibitory strength is proportional to the activation and the simi-
larity of the current neuron and competing neuron’s convolutional
patches, forcing the neurons to be decorrelated.

The full model we developed is a highly recurrent multimodal
network based upon deep sparse coding [9, 14]. The deep sparse
model was implemented using OpenPV1. OpenPV is an open source,

1https://github.com/PetaVision/OpenPV
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object oriented neural simulation toolbox optimized for high-performance
multi-core computer architectures. In the following sections, we
describe and illustrate how we extended the framework to create
spatiotemporal sequence memories. The underlying principles of
sparsity are maintained within a highly recurrent network that
integrates forward, lateral, and feedback connections.

3.1 Creating “Deep” Sparse Coding Networks
The term, "deep", is borrowed from the machine learning literature
referencing deep learning. At a simplistic level, the depth refers
to the fact that a network has multiple hidden layers between the
input and output. The idea of depth has underpinnings in cortical
function, where neural circuits and networks are hierarchical in
nature. For example, in the visual cortex, we know that visual
information passes through the retina, onward to the LGN, and
then to the visual cortex. The visual cortex is structured into a
hierarchy of visual areas V1, V2, V4, etc., where information does
not simply move in a feedforward manner, but is highly recurrent,
and integrating both feedforward and feedback information. At the
low levels of the visual cortex, the neurons are tuned to simple visual
characteristics such as orientation, spatial frequency, size, color,
and shape [8]. At higher levels of the visual cortex, the neurons
are more invariant to simple visual differences and tuned to more
complex visual stimuli, often integrating combinations of low level
features.

Our sparse coding model is structured to mimic the principle
form and function of biological networks. We illustrate the process
by which we can make each sparse coding level deeper and hierar-
chical in Figure 2. In Figure 2(a), we show a single sparse coding
layer, where the input, I, is sparse coded by V1 using a learned
dictionary, D1. In this example, I′ is the reconstruction of I. We
“bend” the network (mathematically, this has no impact), Figure 2(b)
in order to visually accommodate another layer of sparse coding
on top of V1, see Figure 2(c). V2 performs a reconstruction of the
membrane potential of V1 using a learned dictionary, D2. Since
the entire hierarchy is a dynamic system solved iteratively, the top
layers can inform the activity of the lower layers with top-down
feedback.

3.2 Creating “Wide” Sparse Coding Networks
While the idea of depth is internal to the structure of the brain,
the idea of width is much more observable. As we can clearly see,
our perception system consists of multiple input streams. Thus
our brains have to reconcile multiple information streams at once,
including binocular vision, audition, somatosensory information,
etc. Wemetaphorically represent different input streams as multiple
inputs into a sparse coding layer. In this way, we aremaking a sparse
coding network “wide” as illustrated in Figure 3.

In Figure 3 (a), we show a complete two layer sparse coding
network with full reconstructions, I′, V1′, and I′′. Because V2 is
reconstructing V1′, the reconstruction in I′′ through V1′ is not ex-
actly the same as I′, as there is inevitably some small error. In order
to simplify the visualization of multi-layer sparse coding networks,
we hide the reconstructions as show in Figure 3(b), even though
they are still there and being used for the error computation. Finally,
in Figure 3(c), we illustrate the addition of another input stream.

(a) Single sparse
coding layer

(b) Single sparse coding
layer bend transition

(c) Two layer sparse coding
network, V2 stacked on top
of V1

Figure 2: An illustration of how we transition from a single
sparse coding layer (a), to a multi layer, hierarchical sparse
coding network (c). The transition in (b) is only visual and
has no computational effect on the model. Note that in (c),
V2 is reconstructing the membrane potential of V1 using a
learned dictionary D2.

The new input stream, B, utilizes its own learned dictionary, DB,
but the sparse coding layer V1 must use the same sparse activation
vector to represent both input streams, A and B. Because of this ar-
chitecture, we can say that the dictionaries, DA and DB, are linked.

(a) Complete two layer sparse coding
network, with a reverse bend transition

(b) Equivalent
representation
to (a)

(c) Addition of another
input stream to the net-
work

Figure 3: An illustration of how we transition from a deep
sparse coding network into a multimodal deep sparse cod-
ing network. In (a) we show all of the components of the
network and visually bend the reconstruction, I′′ to the
top of the network (even though it is technically being
passed through V1′). In (b) we show a simplified visualiza-
tion where the reconstruction components are hidden. Fi-
nally, in (c) we show the addition of another input stream
into the network. Each input stream has its own dictionary,
but the sparse coding layer, V1, must share the same activa-
tion between input streams. This will enable the two input
dictionaries to be linked.
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(a) Sequential Train Process (b) Prediction Process

Figure 4: Configurations of the spatiotemporal deep sparse coding architecture. (a) is the training architecture and (b) is used
for inference. The sequence memory is stored in the dictionary elements, D1-D5, and learned through a Hebbian like update
from a residual reconstruction error. During inference, a truncated input is presented to the network which then optimizes
for a sparse activation. Since the dictionaries D1-D5 are linked, we can utilize the sparse activations and D5 to predict the next
frame in the sequence, F5.

3.3 The Spatiotemporal Model
Using the concepts of deep sparse coding networks and multimodal-
ity in a layer, we construct our final spatiotemporal model as shown
in Figure 4. The model is structured as one input layer followed by
two sparse coding layers. The input layer supports five streams of
data that we map to image frames to support video. This introduces
a conceptual difference from the traditional view of multimodality,
since we treat time e.g. the frames of a video, as separate input
streams. In specific terms, an input to our system is snapshot of five
image frames, initialized t=1..5. The next input to the system would
be another sequence of video frames, t=2..6, and would continue
until the end of a video sequence. Presenting the data in this fashion
will result in a learned spatial and temporal sequence within the
model.

Dictionary Learning
In order to update the linked dictionaries, D1 - D5, we formulate
the sparse coding problem as an energy minimization,

E =
1
2
∥x − Da∥22 +

1
2
λ∥a∥1 (2)

Where the update to the dictionary, D, can be obtained by taking
the gradient of the energy function with respect to D,

∆D ∝ −
∂E

∂D
= a ⊗ (x − Da) (3)

This process can be achieved by first computing a sparse representa-
tion for a given input, x , and then computing the ∆D to reduce the
reconstruction error given the sparse representation of the current
input. The weight update is akin to a local Hebbian learning rule
with pre and post-synaptic activities. For more details on the exact
implementation of dictionary learning, see [14].

Prediction Process
The model is trained with the full structure shown in Figure 4
(a). During training, the weights are plastic and can be updated
through dictionary learning. However, at prediction time, we fix the
dictionary weights and make another minor adjustment. We omit
the last input frame, F5, and perform inference on the truncated
input. After optimizing for the sparse activations, e.g. dictionary

coefficients, we can reconstruct input frames F1-F5, essentially
predicting the next frame of the input sequence as shown in Figure
4(b).

The key component to the prediction task is the fact that the
dictionaries, D1-D5, are linked. During the training process, a single
activation was used in Equation 3, shared across all input streams.
Therefore the same activation represents sequential input frames in
our model. We can use the activations that best match the truncated
input and use this same activation vector to reconstruct the miss-
ing input. This is reminiscent to the previous work mentioned by
Gavornik and Bear [7] where cortical activity in V1 regenerates a
full sequence even when individual stimulus elements are omitted.

(a) D1 (b) D2 (c) D3

(d) f1 (e) f2 (f) f3 (g) f4 (h) f5

Figure 5: (a), (b), and (c) Show the dictionary D1, D2, and
D3 learned from observing the synthetic video sequences.
We expand on one of the sequences in (d)-(h) from a single
dictionary element contained in D1-D5. This particular se-
quence memory shows an ball moving from the top left to
the bottom right.
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(a) Reconstruction error of spatial anomalies (b) Reconstruction error of temporal anomalies

(c) (top) Input image sequence (bottom) Predicted reconstruction (d) (top) Input image sequence (bottom) Predicted reconstruction

Figure 6: (a-b) Plots of reconstruction errors using prediction and reconstruction on normal data and anomalous data. (c-d)
Visualization of the spatial and temporal anomalies. (c) Frames 47-53 of the bouncing ball dataset showing the change from a
ball bouncing to a square bouncing. (d) Frames 64-69 in the temporal domain that display an abrupt change in ball position.

4 EXPERIMENTS AND RESULTS
For our experiments and results, we tested our spatiotemporal
model on both synthetic and real world data. For both sets of exper-
iments, we used the same architecture as shown in Figure 4. All of
the experiments were run using the open source neural simulation
toolbox, OpenPV. With the prediction model, we are interested in
answering several questions. How well does the model predict the
next frame? And to what extent do the predictions help us in other
tasks, such as anomaly detection?

4.1 Synthetic Data
For our synthetic dataset, we selected a simple and well structured
dataset called the bouncing balls dataset [15]. The data consists
of videos where 3 white balls bouncing in a black box. The balls
are constant in size, never merge, or disappear off the visual field.
The videos are of length 100 frames with a resolution 32x32 pixels.
Each training example is synthetically generated, so no training
sequence is seen twice by the model.

Using the synthetic dataset, we learned dictionary elements
of size 8x8 with a dictionary size of 256 elements. Training was
performed over 3000 image sequences and 25 epochs through the
data. The learned dictionary elements are shown in Figure 5. We
can compute the prediction error by MSE between the predicted
frame and actual frame. Furthermore, because of the structured
nature of this dataset, we can perform an ablation study of how the

model responds to spatial and temporal anomalies independent of
each other.

Anomalies in the Spatial Domain
In the bouncing ball dataset, the vision system has only ever seen
three white balls. As one can see in the learned dictionary, the
structure primitives match circular objects. To test the ability of the
system to detect spatial anomalies, we introduce a square shape to
frames 50-60 as shown in Figure 6 (c) and display the reconstruction
error in Figure 6 (a). We plot the spatial prediction error in blue,
and the normal prediction error in orange. There is a large jump
in the frames where the square anomaly presents itself in the data.
We also are able to see a significant jump in reconstruction error
(dotted purple) when the model is presented the full (non-truncated)
input. This indicates that even when not predicting, the model still
has a difficult time reconstructing objects that never presented
themselves in the training data. In summary for the spatial domain,
it is clear that both the reconstruction error and in predicted error
can detect the existence of a spatial anomaly.

Anomalies in the Temporal Domain
In the temporal domain, we shuffled some of the image sequence
data to create discontinuous motion. Specifically, we took frames
20-29 and swapped them with 70-79. In Figure 6 (b) we see the
predicted error peaks during the onset of the switch, and again at
the offset of the frame switch. In Figure 6 (d) we can visualize why
the error peaks in this fashion. As the image sequence progresses,
the third image frame in on the (top row) original image sequence
shows the discontinuity. In the respective (bottom) predicted image
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(a) Predictive reconstruction error in the Desert environment at the Naval Research Laboratory

(b) Sequence that corresponds to the discontinuity in MSE error (a) highlighted in red.

(c) Predictive reconstruction error in the High Bay environment at the Naval Research Laboratory

(d) Sequence that corresponds to the high MSE error (c) highlighted in red

Figure 7: Plot of reconstruction error using our spatiotemporal predictive model in the (a) Desert scene and in (b) a reconfig-
urable High Bay. (b)(d) The video frame sequence that corresponds to respective areas highlighted in red in the reconstruction
error graph. (b) The anomaly presented here is due to a bright light entering the image frame. (d) The anomaly presented here
is due to fast moving vehicle hitting the PackBot.

sequence, the model expects the ball motion to continue with the
current trajectory. This error is captured in the reconstruction error
plot.

What is especially interesting in the temporal domain is that this
discontinuous motion is not well detected with a non-predictive
model. In fact, one can see that the reconstruction error with non-
truncated input is nearly zero with the original data and with the
temporal anomalous data. Thus, for temporal anomalies, simply
relying on reconstruction error is not sufficient, and warrants the
utilization of a predictive sparse coding model.

4.2 Real Data
For our real data, we used video data obtained from a small robot-
ics platform (an Endeavor Robotics PackBot 510) with a Carnegie
Robotics S7 sensor. This robot was tele-operated around several
environments in the Laboratory for Autonomous Systems Research
(LASR) at the Naval Research Lab, see Figure 1.

The model is trained over a video sequence of 1,088 video frames
sized at 256x256 pixels. Groups of five frames are sparse coded
simultaneously (as labeled f1-f5 in Figure 4(a)). The layer labeled
V1 defines the joint activation of the input frames in a single sparse
activation vector of size 128x128x256. The dictionary elements used
to create the sparse code are labelled D1-D5, are of size 8x8x256.

These begin as random noise and eventually become structural
primitives as shown in Figure 8 (a)-(c).

The layer P1 is higher layer in the architecture that is of size
32x32x512 and has a larger receptive than its V1 counterpart. The
neurons within this layer have a larger receptive field and see the
image input as an entire sequence. Metaphorically, P1 is at a higher
level of cognition in the “brain” and can provide top-down feedback
to guide the lower layers. In this case, the sequence memory has
been stored in the dictionary elements D1-D5 and are more edge-
like representing the structural primitives of the real world. An
example of such a sequence can be seen in Figure 8(d)-(h).

We present the predictive reconstruction error of two image
sequences captured in the LASR environments, one is a desert
scene and one is in a reconfigurable mechanical bay, see Figure
7. As expected, in these real world environments, the predictive
reconstruction error has much more variance than the synthetic
data. However, as illustrated in the plots in Figure 7 (a)(c), there are
relative peaks in the error that map to semantic events in the video
sequences. For example, there is a very high discontinuity in the
Desert MSE around frame 110. When looking back at the image
data, we see that the robot moves around the corner and a blinding
light suddenly appears. In the High Bay MSE, there are strong
peaks visible when the robot rotates about its axis. In frames 60-80,
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the robot performs nearly a 180 degree turn. We show a different
relative peak in MSE through Figure 7(d). This is anomalous event
where another robot in the scene appears and collides with the
robot at high speed.

(a) D1 (b) D2 (c) D3

(d) f1 (e) f2 (f) f3 (g) f4 (h) f5

Figure 8: (a), (b), and (c) Show the dictionary D1, D2, and
D3 learned from observing video sequences. We expand on
one of the sequences in (d)-(h) from a single dictionary ele-
ment contained in D1-D5. This particular sequencememory
shows an edgemoving from left to right and would be a gen-
erator for local edgemovements in an input video sequence.

5 CONCLUSION
In conclusion, we created an artificial model that is able to mimic
early, low level biological predictive behavior in a computer vision
system. We utilize a biologically plausible algorithm based upon
sparse coding to learn spatiotemporal sequence memories. Without
supervision, our sparse coding framework learns the causes of the
data by observation. We experimented on both synthetic data and
real world data to illustrate the benefits of our model. Our ablation
experiments on synthetic data show that we are able to accurately
predict what will happen in the future; and that our model can
detect anomalous events in space and time. Our experiments on
real world data show more variance in predictive error, and also
show that we are able to map semantic events in the video sequence
to predictive reconstruction error.
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