
A Neuromorphic Sparse Coding Defense to Adversarial Images
Edward Kim

Villanova University
Villanova, Pennsylvania

edward.kim@villanova.edu

Jessica Yarnall
Villanova University

Villanova, Pennsylvania
jyarnal1@villanova.edu

Priya Shah
Villanova University

Villanova, Pennsylvania
pshah26@villanova.edu

Garrett T. Kenyon
Los Alamos National Laboratory

Los Alamos, New Mexico
gkenyon@lanl.gov

ABSTRACT
Adversarial images are a class of images that have been slightly
altered by very specific noise to change the way a deep learning
neural network classifies the image. In many cases, this particular
noise is imperceptible to the human vision system and thus presents
a vulnerability of significant concern to the machine learning and
artificial intelligence community. Research towards mitigating this
type of attack has taken many forms, one of which is to filter or post
process the image before classifying the image with a deep neural
network. Techniques such as smoothing, filtering, and compression
have been used with varying levels of success.

In our work, we explored the use of a neuromorphic software
and hardware approach as a protection against adversarial image
attack. The algorithm governing our neuromorphic approach is
based upon sparse coding. Our sparse coding approach is solved us-
ing a dynamic system of equations that models biological low level
vision. Our quantitative and qualitative results show that a sparse
coding reconstruction is remarkably invariant to changes in spar-
sity and reconstruction error with respect to classification accuracy.
Furthermore, our approach is able to maintain low reconstruction
errors without sacrificing classification performance.

CCS CONCEPTS
• Computing methodologies → Computer vision; Machine
learning approaches; • Hardware → Neural systems.

KEYWORDS
neuromorphic computing, sparse coding, adversarial image attack

ACM Reference Format:
Edward Kim, Jessica Yarnall, Priya Shah, and Garrett T. Kenyon. 2019. A
Neuromorphic Sparse Coding Defense to Adversarial Images. In Interna-
tional Conference on Neuromorphic Systems (ICONS ’19), July 23–25, 2019,
Knoxville, TN, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3354265.3354277

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICONS ’19, July 23–25, 2019, Knoxville, TN, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7680-8/19/07. . . $15.00
https://doi.org/10.1145/3354265.3354277

Figure 1: Examples of images next to the adversarial pertur-
bation noise, and the resulting adversarial image (original
image plus noise) from Szegedy et al. [26]. The original im-
ages are correctly classified; however, with the addition of
noise, the adversarial image is classified as an “ostrich”. As
seen in the example, the adversarial image is nearly identi-
cal to the original image with no detectable semantic differ-
ence.

1 INTRODUCTION
Deep learning has revolutionized virtually all computer vision and
machine learning tasks. Convolutional neural networks (CNNs) are
now the standard in image classification, detection, and segmen-
tation. In some settings, deep learning artificial neural networks
can perform at super human levels [10, 29]. But even though these
networks perform specific tasks very well, they have a surprising
and disturbing property that they are susceptible to attack using
adversarial images [13, 20, 25, 26]. An example of a specific type of
adversarial image can be seen in Figure 1. Adversarial images are
a class of images that have been slightly altered by very specific
noise. This noise has the effect of changing the way a deep learning
neural network classifies the image. Although general adversarial
noise alone is not a particularly critical issue, i.e. one can imagine
continually adding noise to an image until it becomes unrecogniz-
able, the main problem is that, in many cases, this particular noise
is imperceptible to the human vision system. Thus, it is clear that
a deep learning classification system is learning some subset of
features that are principally different from what humans learn and

https://doi.org/10.1145/3354265.3354277
https://doi.org/10.1145/3354265.3354277
https://doi.org/10.1145/3354265.3354277

ICONS ’19, July 23–25, 2019, Knoxville, TN, USA Edward Kim, Jessica Yarnall, Priya Shah, and Garrett T. Kenyon

use for object recognition, and these features can be easily manipu-
lated by high frequency noise. As deep learning becomes more and
more pervasive in autonomous vehicles, voice recognition systems,
biometric security, etc., this vulnerability is of significant concern
to the machine learning and artificial intelligence community.

In our work, we explored the possibilities of creating a neu-
romorphic software and hardware defense to adversarial image
attacks. We define the term neuromorphic as technology that imple-
ments models of neural systems. These neuromorphic technologies
mimic particular forms and functions of mammalian brains. If we
are able to more closely model the process of human perception,
it is conceivable that such a system would not be susceptible to
small, noisy perturbations and would mitigate the effects of this
attack. Towards this goal, we perform a systematic evaluation of a
neurmorphic software and hardware approach based upon sparse
coding. We compare our approach to other similar strategies to
defending against adversarial image attack and present both qual-
itative and quantitative results that highlight the benefits of our
neuromorphic approach.

2 BACKGROUND
2.1 Background in Adversarial Image Attack
Adversarial image attacks can be performed in different ways and
can be categorized by methodology and information. One cate-
gory of attack are white box attacks where the attack algorithm
has access to the classification model parameters and can use this
information to perturb the input image pixels. In many of these
cases, the gradient of the loss function can be observed for the
attack process. Examples of attacks that use gradient information
include Fast Gradient Sign Method (FGSM) [8], Iterative-FGSM [28],
and Deepfool [18].

Another category of attack are the black box attacks where the
attack algorithm does not have access to the classifier. These attacks
must find perturbations with nearly zero knowledge of the under-
lying classifier. An example of this type of attack was used in the
one pixel attack method [24]. This black box attack uses differen-
tial evolution, where a population of candidate solutions generate
offspring which compete with the rest of the population according
to their fitness. New offspring are generated by combining (mutat-
ing) individuals in the population, and replacing worse-performing
individuals with better candidates.

Just as there are multiple ways to attack a classifier, there are
multiple ways to defend against attack. One approach, adversar-
ial training, incorporates the attack images into the training set.
This introduces the attack pattern to the learning algorithm and
attempts to make the classifier more robust. Alternatively, a dif-
ferent kind of defense involves transforming the input signal. The
basic idea of input transformation defenses is to alter the input
image to eliminate the adversarial noise. Some examples of input
transformation include spatial smoothing or blurring methods [30],
compression techniques [4], and total variation minimization [9].
We note that this list is not exhaustive and there are many more
attacks and defenses. We presented several approaches in order to
provide some context into the field of adversarial image attack. For
our work, we will use some of the more common methods of input
transformation as comparisons to our neuromorphic approach.

2.2 Background in Neuromorphic Software and
Sparse Coding

The principle of sparsity is central to how we perceive and under-
stand the world in which we live. The brain’s neural representations
are sparse and highly recurrent with many feedback connections.
Strong evidence demonstrates that the neural code is both explicit
and sparse [6] where neurons fire selectively to specific stimuli.
Olshausen and Field [19] have shown that sparsity is a desirable
property as our natural environment can be described by a small
number of structural primitives. Sparse codes have a high represen-
tational capacity in associative memory, far surpassing the number
of input-output pairs that can be stored by a more dense code [2],
and biologically, the sparsity of neural codes are more metaboli-
cally efficient and reduce the cost of code transmission [1]. The
advantages of sparsity in a neural network are supported by the
research and support the interpretability of sparse codes. These
include: information disentangling, efficient variable-size represen-
tation, and evidence that sparse representations are more linearly
separable [7].

The algorithm governing our neuromorphic approach is based
upon sparse coding. Mathematically, sparse coding is a reconstruc-
tion minimization problem which can be defined as follows. In the
sparse coding model, we have some input variable x (n) from which
we are attempting to find a latent representation a(n) (we refer to
as “activations”) such that a(n) is sparse, e.g. contains many zeros,
and we can reconstruct the original input, x (n) with high fidelity.
A single layer of sparse coding can be defined as,

min
Φ

N∑
n=1

min
a(n)

1
2
∥x (n) − Φa(n)∥22 + λ∥a

(n)∥1 (1)

Where Φ is the overcomplete dictionary, and Φa(n) = x̂ (n), or the
reconstruction of x (n). The λ term controls the sparsity penalty,
balancing the reconstruction versus sparsity term. N is the total
training set, where n is one element of training. Φ represents a
dictionary composed of small kernels that share features across the
input signal.

Recent work has started looking at the adversarial problem with
components of sparse coding as a potential solution. Dictionary
denoising on image samples improves classification [17] and spar-
sity has shown some robustness to adversarial attacks on linear
classifiers [16]. Additionally, the use of sparse coding has amaz-
ing image denoising properties, which inherently provides some
robustness to pixel perturbations [17]. Sparse coding is also unsu-
pervised, which provides support against gradient based attacks on
supervised neural networks. Deep learning networks tend to learn
surface statistical regularities [13] in the data, whereas, sparse cod-
ing learns feature representations robust to variances in the data.

2.3 Background in Neuromorphic Hardware
and Spiking Neural Networks

If we consider that the language of the brain is, "spikes", then the
next frontier of neuromorphic computation is spiking hardware.
There have been a small number of major efforts in creating neu-
romorphic hardware systems such as IBM’s True North (2014),
SpiNNaker (2009), and Intel’s Loihi (2018). Intel’s Loihi is the latest

A Neuromorphic Sparse Coding Defense to Adversarial Images ICONS ’19, July 23–25, 2019, Knoxville, TN, USA

chip developed and was released for research in 2018. Loihi is a
manycore spiking neural network, where a single chip contains 128
neuromorphic cores, 128k neurons, 128M synapses.

In our work, we utilized Intel’s Loihi chip and thus describe this
hardware and dynamics of this system in more detail. The chip is
created in a 14nmprocesswith scalable on-chip learning capabilities.
The chip is fully asynchronous, fully digital, and deterministic. At
any given time, the neurons may send out a spike to its neighbors by
use of virtual synapses. Neurons have two internal state variables -
a synaptic response current, a weighted sum of the input spikes and
a constant bias, and membrane potential that leaks over time and
will send out a spike when the potential crosses the firing threshold.
Once enough spikes accumulate and exceed some threshold, a spike
message is generated and sent to other connected neurons. In the
following section, we will describe how the sparse coding problem
can be transformed into a dynamic system.

3 METHODOLOGY
3.1 Sparse Coding as a Dynamic System
We use the Locally Competitive Algorithm (LCA) [21] to mini-
mize the mean-squared error (MSE) with sparsity cost function
as described in Equation 1. The LCA algorithm is a biologically
informed sparse solver that uses principles of thresholding and local
competition between neurons. The LCA model is governed by dy-
namics that evolve the neuron’s internal state when presented with
some input image. The internal state, i.e. “membrane potential”,
charges up like a leaky integrator and when it exceeds a certain
threshold, will activate that neuron. This activation will then send
out inhibitory responses to units within the layer to prevent them
from firing. The input potential to the state is proportional to how
well the image matches the neuron’s dictionary element, while the
inhibitory strength is proportional to the activation and the simi-
larity of the current neuron and competing neuron’s convolutional
patches, forcing the neurons to be decorrelated.

We utilize a modified LCA that uses a deconvolutional approach
[22] called OpenPV 1 . OpenPV is an open source, object oriented
neural simulation toolbox optimized for high-performance multi-
core computer architectures. Equation 1 is transformed into an
energy function, whereby minimizing the energy with respect to
Φ generates a sparse code that faithfully reconstructs the image
with few feature vectors. The feature vectors, or dictionary Φ, is
learned using a Hebbian weight update rule using a residual (error)
layer. Some examples of learned dictionary elements can be seen
in Figure 2.

3.2 Dataset
In our work, we worked on the CIFAR-10 dataset. This dataset
consists of 32x32 color images, 10 classes, and 6,000 images per
class. For our experiments, we randomly select 1,000 test images that
have not been seen during training. There are several reasons why
we decided to evaluate on CIFAR. First, the images are relatively
small. This was a requirement as we are working with emerging
technology, where the size and scale of an ImageNet-like dataset

1https://github.com/PetaVision/OpenPV

(a) Initialization (b) 2,000 (c) 50,000

(d) Red Channel (e) Green Channel (f) Blue Channel

Figure 2: Examples of 112 dictionary elements used for
sparse coding CIFAR images. (a-c) show the progression of
learning an RGB dictionary from (a) a random initialization
to the (c) resulting dictionary after viewing 50,000 CIFAR
training images using OpenPV. The figures (d-f) show sepa-
rated red, green, and blue dictionary channels learned using
a patch-based least angle regression method.

(a) (b) (c)

Figure 3: High distortion effects are visible inmany gradient
based attacks such as FGSM, iterative FGSM, and Deepfool
onCIFAR 32x32 images. In (a)-(c) we illustrate how the noise
effects CIFAR sized images using a Deepfool attack.

would be computationally prohibitive at this time. Second, the one-
pixel black box attack described in Su et al. [24] has been extensively
tested on CIFAR-10. This provides a replicable benchmark for our
research. Other gradient based methods on CIFAR frequently create
high distortion, unrecognizable images, see Figure 3, and therefore
not evaluated in this work.

3.3 Neural Network Models
We evaluated our method on the following neural network archi-
tectures.
ResNet [11] - ResNet is a residual learning framework that won 1st
place in the ILSVRC 2015 classification task. ResNet uses residual
functions to learn and has shown this is an effective way of training
networks that are substantially deeper than previous models. The
ResNet instance that we use has a total of 32 layers and achieves a
92.3% accuracy on the CIFAR-10 dataset. After being attacked, the
baseline accuracy of ResNet is 67.5% when perturbing one pixel.

ICONS ’19, July 23–25, 2019, Knoxville, TN, USA Edward Kim, Jessica Yarnall, Priya Shah, and Garrett T. Kenyon

The baseline accuracy drops to 27.6% when using three pixels.
The use of five pixels has a nearly equivalent baseline accuracy
around 27%.

LeNet [15] - LeNet-5 was one of the earliest developed deep
convolutional neural networks. The instance of LeNet-5 that we
use is a five layer network consisting of two convolutional layers
and three densely connected layers. LeNet-5 achieves a 74.9% accu-
racy on the CIFAR-10 dataset. After being attacked, we observed
the baseline accuracy of LeNet-5 is 41.0% when perturbing one
pixel.

DenseNet [12] - DenseNet refers to a convolutional neural net-
work that is densely connected, i.e. every layer is connected to every
other layer in a feed-foward fashion. DenseNet was able to achieve
the highest test accuracy of the networks shown on CIFAR-10 with
a test accuracy of 94.7%. After being attacked, the baseline accuracy
of DenseNet dropped to 74.3% when perturbing one pixel..

3.4 Defense Methods
For the defense against adversarial image attack, we compared
against several common input transformation defense methods and
some variants of sparse coding.

Spatial Sampling [30] - One of the most basic approaches to
removing adversarial noise is through the use of image filters. A
common filter is a gaussian smoothing operation where the blurring
radius is parameter that must be chosen.

JPG compression [4] - The process of removing adversarial
noise can be viewed as a lossy image compression problem where
the noise is idealy removed in the encoded image. Some have used
JPG compression as a technique to quantize away the impercep-
tible elements within an image. The quality of compression is a
parameter that should be selected. For example in [4] a quality of
75 is chosen.

LARS Lasso Sparse Coding [5] - The LARS Lasso method is a
least angle regression method that provides an estimate of which
basis vectors (dictionary elements) should be used as well as their
coffieicients. The Lasso problem introduces the L1 penalty as a
convex relaxation to the L0 norm which is used to induce sparsity
within the solution. For the LARS methods, we experimented with
the number of dictionary elements: 112, 224, and 336.

OpenPV LCA Sparse Coding [22] -The OpenPV LCA sparse
coding solver is a neurmorphic software implementation that uti-
lizes concepts of dynamics, leaky integrate and fire neurons, and
lateral inhibition in solving the sparse coding problem. The sparsity
of the solution can be controlled by the regularization parameter, λ.

Loihi LCA Sparse Coding [27] - This method utilizes both
a neuromorphic software and hardware approach to solving the
sparse coding optimization problem. The Intel Loihi chip is a spik-
ing neural network and the implementation by Tang et al. [27]
describes how the rate-encoded LCA algorithm can be converted
and computed using a spiking implementation.

3.5 Evaluation Metrics
The metrics that we use to evaluate our results measure both the
quality of the input after transformation, as well as the accuracy of
transformed images on different neural networks. Specifically, we
measure accuracy of classification over the baseline accuracy (ACC),

(a) Effect of Parameterization on Sparse Coding λ and Blur radius σ on accuracy over
baseline (ResNet one pixel attack) and mean squared error to the input image.

(b) Effect of Parameterization on Sparse Coding λ and JPG Quality on accuracy over
baseline (ResNet one pixel attack) and mean squared error to the input image.

Figure 4: Comparison between sparse coding and (a) spatial
smoothing and (b) jpg compression. The solid color lines are
plotted with the primary axis (left Y axis) and represent the
accuracy increase over the baseline. The dotted, and lighter
shaded lines are plotted with the secondary axis (right Y
axis) and represent the mean squared error of the trans-
formed image and input image.

mean squared error (MSE), peak signal-to-noise ratio (PSNR), and
distortion to accuracy ratio (DistR). For the random test images, we
ensure that every one of the 1000 test images that we attack were
originally correctly classified by the model.

For the metric calculations, we define the MSE as the measure
of the squared sum of square differences between the attack image

A Neuromorphic Sparse Coding Defense to Adversarial Images ICONS ’19, July 23–25, 2019, Knoxville, TN, USA

and the reconstruction image, divided by the total number of pixels.
The PSNR measure uses the ratio of error to the maximum intensity
of the image. We calculate PSNR by the following equation,

PSNR = 10 · loд10
MAX 2

I
MSE

(2)

PSNR is most commonly used to measure the quality of reconstruc-
tion of lossy compression codecs (e.g., for image compression). The
signal in this case is the original data, and the noise is the error
introduced by compression. Typical values for the PSNR in lossy
image and video compression are between 30 and 50 dB (the higher
the number the better), provided the bit depth is 8 bits.

We will define the distortion to accuracy ratio as the following
equation,

DistR =
1
n
∑n
i=1(Ii − Îi)

2

ACC
=

MSE

ACC
(3)

At a high level this describes how much distortion is necessary to
the original image (measured in mean squared error) in order to
gain a percentage increase in overall classification accuracy.

4 RESULTS
4.1 The Effect of Parameterization
All of the input transformation defenses that we tested required
the selection of some parameter. In the spatial sampling (blurring)
defense, we were required to select the blurring radius. In the JPG
compression defense, we needed to select the quality of the encod-
ing. For the sparse coding solutions, we need to select the weight
of the L1 penalty in the OpenPV implementation, which controls
the sparsity of the solution. In an experimental setting, we are able
to show the effect of the parameter selection; however, in the real
world, one would not have that luxury. A robust defense should be
as invariant as possible to parameterization. In Figure 4 (a)(b) we
plot the accuracy (on ResNet using a one-pixel attack) and mean
squared error metrics of common defenses versus sparse coding.

As can be seen in Figure 4 (a)(b), the accuracy of both the Blur-
ring and JPG defenses are highly dependent on their respective
parameters. We controlled for the parameter space by using the
MSE measurement, such that there are relatively similar profiles for
MSE in the compared methods. In contrast, sparse coding accuracy
is relatively invariant to the parameter space, even as the MSE con-
tinues to rise, and the sparsity of the solution varies significantly.
At λ = 0.05, the sparsity of the solution is 24.65% while the sparsity
at λ = 1.0 is nearly an order of magnitude lower at 2.83%.

4.2 Qualitative and Quantitative Results
When observing the absolute gain in accuracy in Figure 4 (a), blur-
ring with a radius of 0.75 has the best overall accuracy gain over
the baseline. However, this accuracy gain comes at significant cost
to MSE. Ideally, a robust defense would result in high accuracy
and minimal error (distortion) to the original input. We capture
this ratio in the DistR metric show in Tables 1, 2, 3, 4. These tables
quantitatively list the accuracy over the baseline, peak signal to
noise ratio, mean squared error, and distortion to accuracy ratio,
respectively. Ideally, the ACC and PSNR should be as high as possi-
ble, and the MSE and DistR should be as low as possible. As seen in

the results, some version of sparse coding consistently has the best
(lowest) DistRs and maintains a high overall accuracy.

Qualitative results of a one pixel attack are shown in Figure 5
and a three pixel attack in Figure 6. The visual effects of the input
transformations can be seen at different parameterizations of the
defense algorithm.

5 DISCUSSION
5.1 Neuromorphic Hardware
Although there are benefits of neuromorphic software approaches
to sparse coding e.g. generative model, better features, better inter-
pretability, optimizes an overcomplete basis, etc., the main draw-
back is the computational cost. Thus, we are especially excited with
developments the Intel Loihi in spiking neural network hardware
capabilities. Currently, the implementation of a spiking LCA is run-
ning with 112 dictionary elements, a patch size of 8, and stride of
4. Exponential memory and connectivity costs prohibit a smaller
stride which would help the fidelity of reconstruction.

Although a smaller stride is not possible, we are able to solve
larger input images with the same dictionary and patch sizes. Thus,
to emulate a smaller stride (from 4 to 2), we double the size of the
input image, sparse code with the default stride of four, then resize
the image back to the original size. This sizing trick has a dramatic
effect on the reconstruction quality of the result, often resulting in
MSE improvements of 2.5x-3x.

Qualitative and quantitative results demosntrate that the spiking
LCA hardware implementation has competitive performance, and
can further improve as the hardware develops. Davies et al. [3]
has shown significant improvements in solving the sparse coding
problem both in energy consumption and speed. As of December
2018, the implementation of LCA on Loihi is 10-50x faster for a
non-convolutional sparse coding approach, 100-1000x faster in a
convolutional algorithm, and 10,000x-100,000x times more energy
efficient. The numbers range based upon a range in the number
of unknowns required to solve on an Intel Core i7 - 4790 3.6Ghz
w/32 GB of ram CPU implemented FISTA (fast iterative shrinking-
thresholding algorithm).

5.2 Neuromorphic Software
For this project, our sparse coding neuromorphic approach trans-
forms the input and the transformed input is used for classification
in a deep neural network. The software approach was coded in
the OpenPV framework and the sparse coding optimization was
solved by simulating neuronal membrane potentials, inhibition,
and dynamics. Our results show that a single layer of sparse coding
is a promising direction in protecting against adversarial attack.
However, we believe that true robustness in classification will not
be achieved by an approach that uses the features extracted from a
deep neural network. As stated in our introduction, a deep learning
classification system is learning some subset of features that are
different from what humans learn and use for object recognition,
and these features can be easily manipulated by high frequency
noise. Ideally, we do not go back to the original image, but instead
work directly with the sparse features to perform inference and
image understanding.

ICONS ’19, July 23–25, 2019, Knoxville, TN, USA Edward Kim, Jessica Yarnall, Priya Shah, and Garrett T. Kenyon

(a) 1 px Attack (b) LARS-112 (c) LARS-224 (d) LARS-336 (e) BLUR σ=0.5 (f) BLUR σ=0.75 (g) BLUR σ=1.0

(h) JPG comp=75 (i) JPG comp=85 (j) JPG comp=95 (k) OpenPV λ=0.05 (l) OpenPV λ=0.15 (m) OpenPV λ=0.25 (n) Loihi-112

Figure 5: (a) One pixel attack and (b-n) qualitative results of the resulting gaussian blur filter, compression algorithm, or sparse
reconstruction. Details of the reconstruction best viewed with antialiasing turned off.

(a) 3 px Attack (b) LARS-112 (c) LARS-224 (d) LARS-336 (e) BLUR σ=0.5 (f) BLUR σ=0.75 (g) BLUR σ=1.0

(h) JPG comp=75 (i) JPG comp=85 (j) JPG comp=95 (k) OpenPV λ=0.05 (l) OpenPV λ=0.15 (m) OpenPV λ=0.25 (n) Loihi-112

Figure 6: (a) Three pixel attack and (b-n) qualitative results of the resulting gaussian blur filter, compression algorithm, or
sparse reconstruction. Details of the reconstruction best viewed with antialiasing turned off.

As an example, we have shown that deep sparse coding [14] is im-
mune to adversarial transfer attacks [23] that work across different
deep learning networks. A deep sparse architecture was invariant
to small perturbations in the input image. This robustness stemmed
from the model learning general features corresponding to gener-
ators of the dataset as a whole, rather than highly discriminative
features for distinguishing specific classes. The resulting classifiers
using these features were less dependent on idiosyncrasies that
might be more easily exploited. We also note that our deep sparse
coding models utilize fixed point attractor dynamics with top-down
feedback, making it more difficult to find small changes to the input
that drive the resulting representations out of the correct attractor
basin.

Although no model is immune to all adversarial noise, we were
able to demonstrate that the deep sparse coding model relies on fea-
tures that are different than those relied upon by other deep learning
models. This immunity to adversarial examples has significant im-
plications for the field of transferrable adversarial machine learning.
Figure 7 shows that an image generated to attack the DenseNet121
model is also an effective adversarial image on other CNNs includ-
ing ResNet50, InceptionV3, VGG16 and MobileNetV2, but has no
effect on our deep sparse coding model (DSC).

A Neuromorphic Sparse Coding Defense to Adversarial Images ICONS ’19, July 23–25, 2019, Knoxville, TN, USA

Method on ResNet (1px) ACC PSNR MSE DistR
LARS-112 14.6% 37.87 10.59 0.72
LARS-224 13.6% 40.40 5.92 0.43
LARS-336 13.4% 41.91 4.18 0.31
BLUR σ=0.5 16.3% 37.20 12.36 0.75
BLUR σ=0.75 19.0% 33.40 29.75 1.56
BLUR σ=1.0 5.0% 31.92 41.77 8.35
JPG compression=75 6.7% 33.96 26.09 3.89
JPG compression=85 9.2% 35.45 18.50 2.01
JPG compression=95 8.1% 42.56 3.60 0.44
*OpenPV-112 λ=0.05 15.1% 41.72 4.37 0.28
*OpenPV-112 λ=0.15 15.4% 38.91 8.34 0.54
*OpenPV-112 λ=0.25 15.7% 36.96 13.08 0.83
†Loihi-112 8.7% 37.31 12.07 1.38

Table 1: Results of various input transformation defense
on a ResNet one pixel attack. ACC indicates the improve-
ment over the baseline accuracy. The baseline accuracy of
ResNet one pixel is 67.5%. (*software neuromorphic imple-
mentaiton. †hardware neuromorphic implementation.)

Method on ResNet (3px) ACC PSNR MSE DistR
LARS-112 44.8% 37.58 11.33 0.25
LARS-224 39.0% 39.94 6.58 0.16
LARS-336 35.8% 41.30 4.81 0.13
BLUR σ=0.5 43.3% 36.91 13.21 0.30
BLUR σ=0.75 51.3% 33.25 30.70 0.59
BLUR σ=1.0 44.7% 31.82 42.66 0.95
JPG compression=75 41.0% 33.76 27.34 0.66
JPG compression=85 43.1% 35.21 19.58 0.45
JPG compression=95 28.6% 42.06 4.04 0.14
*OpenPV-112 λ=0.05 38.2% 40.80 5.40 0.14
*OpenPV-112 λ=0.15 43.0% 38.42 9.34 0.21
*OpenPV-112 λ=0.25 45.2% 36.65 14.05 0.31
†Loihi-112 39.3% 36.94 13.13 0.35

Table 2: Results of various input transformation defense
on a ResNet three pixel attack. ACC indicates the improve-
ment over the baseline accuracy. The baseline accuracy of
ResNet three pixel is 27.6%. (*software neuromorphic imple-
mentaiton. † hardware neuromorphic implementation.)

6 CONCLUSION
In conclusion, adversarial image attacks exploit a critical vulnera-
bility in deep learning systems. In computer vision, these attacks
often add imperceptible noise to an image in order to change the
classification result. Previous research has been performed on de-
fending against these attacks. One type of defense is transforming
the input image through the use of filters, compression, or smooth-
ing. However, since these attacks are often imperceptible to the
human vision system, we explored the use of neuromorphic soft-
ware and hardware approaches as a protection against adversarial
image attack.

Method on LeNet (1px) ACC PSNR MSE DistR
LARS-112 36.7% 37.80 10.77 0.29
LARS-224 31.7% 40.30 6.05 0.19
LARS-336 28.6% 41.76 4.32 0.15
BLUR σ=0.5 32.9% 37.04 12.85 0.39
BLUR σ=0.75 34.1% 33.29 30.42 0.89
BLUR σ=1.0 20.2% 31.84 42.48 2.10
JPG compression=75 13.8% 33.96 26.06 1.88
JPG compression=85 13.8% 35.42 18.64 1.35
JPG compression=95 13.8% 42.72 3.47 0.25
*OpenPV-112 λ=0.05 14.2% 41.53 4.56 0.32
*OpenPV-112 λ=0.10 16.0% 40.02 6.47 0.40
*OpenPV-112 λ=0.15 17.6% 38.77 8.62 0.48
†Loihi-112 34.3% 32.45 36.96 1.07

Table 3: Results of various input transformation defense
on a LeNet one pixel attack. ACC indicates the improve-
ment over the baseline accuracy. The baseline accuracy of
LeNet is 41.0%. (*software neuromorphic implementaiton.
†hardware neuromorphic implementation.)

Method on DenseNet
(1px)

ACC PSNR MSE DistR

LARS-112 7.7% 37.89 10.56 1.37
LARS-224 8.3% 40.43 5.88 0.70
LARS-336 7.9% 41.93 4.16 0.52
BLUR σ=0.5 7.9% 37.14 12.54 1.58
BLUR σ=0.75 8.5% 33.33 30.17 3.54
BLUR σ=1.0 -9.6% 31.85 42.46 inf
JPG compression=75 1.1% 33.98 25.95 23.59
JPG compression=85 5.4% 35.38 18.82 3.4
JPG compression=95 2.8% 42.56 3.60 1.28
*OpenPV-112 λ=0.05 7.4% 41.69 4.40 0.59
*OpenPV-112 λ=0.10 7.8% 40.14 6.28 0.80
*OpenPV-112 λ=0.15 9.4% 38.97 8.41 0.89

Table 4: Results of various input transformation defense on
a DenseNet one pixel attack. ACC indicates the improve-
ment over the baseline accuracy. The baseline accuracy
of DenseNet is 74.3%. (*software neuromorphic implemen-
taiton. †hardware neuromorphic implementation.)

Our sparse coding approach is solved using a dynamic system
of equations that models biological low level vision. This approach
was further tested on a spiking neural network chip, Loihi. Our
results show feasibility and competitiveness in accuracy of per-
formance, with significant benefits in time to solution and energy
consumption. From both the quantitative and qualitative results,
we come to the following conclusions.

1. A resulting sparse coding reconstruction is remarkably
robust to changes in sparsity and MSE reconstruction error
with respect to classification accuracy. The fact that sparse cod-
ing reconstruction classification is relatively invariant to large

ICONS ’19, July 23–25, 2019, Knoxville, TN, USA Edward Kim, Jessica Yarnall, Priya Shah, and Garrett T. Kenyon

Figure 7: Accuracy scores of various deep learning CNNs.
DenseNet121 is attacked leading to an accuracy of 0 on the
adversarial examples. The performance of all models drops
significantly on transferred adversarial examples while our
deep sparse codingmodel (DSC) is immune. Details on these
results can be found in [23]

changes in the parameter space supports the idea that this neu-
romorphic approach is a viable defense to adversarial images and
increases one’s confidence that the reconstruction will be both
accurate and high quality.

2. Sparse coding has the best distortion to accuracy ratio
whilemaintaining a high level of classification. Sparse coding
is able to maintain a low reconstruction error and also successfully
denoise adversarial perturbations from an input signal.

7 ACKNOWLEDGEMENTS
Thismaterial is based uponwork supported by the Intel Corporation
and the National Science Foundation under Grant No. 1846023.

REFERENCES
[1] Roland Baddeley. 1996. Visual-Perception-An Efficient Code in V1. Nature 381,

6583 (1996), 560–561.
[2] Eric B Baum, John Moody, and Frank Wilczek. 1988. Internal representations for

associative memory. Biological Cybernetics 59, 4-5 (1988), 217–228.
[3] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang

Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain,
et al. 2018. Loihi: A Neuromorphic Manycore Processor with On-Chip Learning.
IEEE Micro 38, 1 (2018), 82–99.

[4] Gintare Karolina Dziugaite, Zoubin Ghahramani, and Daniel M Roy. 2016. A
study of the effect of jpg compression on adversarial images. arXiv preprint
arXiv:1608.00853 (2016).

[5] Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al. 2004. Least
angle regression. The Annals of statistics 32, 2 (2004), 407–499.

[6] Peter Foldiak. 2003. Sparse coding in the primate cortex. The handbook of brain
theory and neural networks (2003).

[7] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep sparse rectifier
neural networks. In Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics. 315–323.

[8] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[9] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten. 2017.
Countering adversarial images using input transformations. arXiv preprint
arXiv:1711.00117 (2017).

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep
into rectifiers: Surpassing human-level performance on imagenet classification.
In Proceedings of the IEEE international conference on computer vision. 1026–1034.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition (CVPR). 770–778.
[12] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.

2017. Densely connected convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 4700–4708.

[13] Jason Jo and Yoshua Bengio. 2017. Measuring the tendency of CNNs to learn
surface statistical regularities. arXiv preprint arXiv:1711.11561 (2017).

[14] Edward Kim, Darryl Hannan, and Garrett Kenyon. 2018. Deep Sparse Coding for
Invariant Multimodal Halle Berry Neurons. Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR) (2018).

[15] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[16] Zhinus Marzi, Soorya Gopalakrishnan, Upamanyu Madhow, and Ramtin
Pedarsani. 2018. Sparsity-based Defense against Adversarial Attacks on Lin-
ear Classifiers. arXiv preprint arXiv:1801.04695 (2018).

[17] John Mitro, Derek Bridge, and Steven Prestwich. 2018. Denoising Dictionary
Learning Against Adversarial Perturbations. arXiv preprint arXiv:1801.02257
(2018).

[18] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2016.
Deepfool: a simple and accurate method to fool deep neural networks. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2574–2582.

[19] Bruno A Olshausen and David J Field. 1997. Sparse coding with an overcomplete
basis set: A strategy employed by V1? Vision research 37, 23 (1997), 3311–3325.

[20] Nicolas Papernot, PatrickMcDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. 2016. The limitations of deep learning in adversarial
settings. In Security and Privacy (EuroS&P), 2016 IEEE European Symposium on.
IEEE, 372–387.

[21] Christopher Rozell, Don Johnson, Richard Baraniuk, and Bruno Olshausen. 2007.
Locally competitive algorithms for sparse approximation. In IEEE International
Conference on Image Processing, Vol. 4. IEEE, IV–169.

[22] Peter F Schultz, Dylan M Paiton, Wei Lu, and Garrett T Kenyon. 2014. Replicating
kernels with a short stride allows sparse reconstructions with fewer independent
kernels. arXiv preprint arXiv:1406.4205 (2014).

[23] Jacob M Springer, Charles S Strauss, Austin M Thresher, Edward Kim, and Gar-
rett T Kenyon. 2018. Classifiers Based on Deep Sparse Coding Architectures are
Robust to Deep Learning Transferable Examples. arXiv preprint arXiv:1811.07211
(2018).

[24] Jiawei Su, Danilo Vasconcellos Vargas, and Sakurai Kouichi. 2017. One pixel
attack for fooling deep neural networks. arXiv preprint arXiv:1710.08864 (2017).

[25] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. 2019. One pixel
attack for fooling deep neural networks. IEEE Transactions on Evolutionary
Computation (2019).

[26] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199 (2013).

[27] Ping Tak Peter Tang, Tsung-Han Lin, and Mike Davies. 2017. Sparse coding by
spiking neural networks: Convergence theory and computational results. arXiv
preprint arXiv:1705.05475 (2017).

[28] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh,
and Patrick McDaniel. 2017. Ensemble adversarial training: Attacks and defenses.
arXiv preprint arXiv:1705.07204 (2017).

[29] TobiasWeyand, Ilya Kostrikov, and James Philbin. 2016. Planet-photo geolocation
with convolutional neural networks. In European Conference on Computer Vision.
Springer, 37–55.

[30] Weilin Xu, David Evans, and Yanjun Qi. 2017. Feature squeezing mitigates and
detects carlini/wagner adversarial examples. arXiv preprint arXiv:1705.10686
(2017).

	Abstract
	1 Introduction
	2 Background
	2.1 Background in Adversarial Image Attack
	2.2 Background in Neuromorphic Software and Sparse Coding
	2.3 Background in Neuromorphic Hardware and Spiking Neural Networks

	3 Methodology
	3.1 Sparse Coding as a Dynamic System
	3.2 Dataset
	3.3 Neural Network Models
	3.4 Defense Methods
	3.5 Evaluation Metrics

	4 Results
	4.1 The Effect of Parameterization
	4.2 Qualitative and Quantitative Results

	5 Discussion
	5.1 Neuromorphic Hardware
	5.2 Neuromorphic Software

	6 Conclusion
	7 Acknowledgements
	References

