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Abstract Cervical cancer is one of the leading causes of death for women world-
wide. Early detection of cervical cancer is possible through regular screening; how-
ever, in developing countries, screening and treatment options are limited due to
poor (or lack of) resources. Fortunately, low cost screening procedures utilizing vi-
sual inspection after the application of acetic acid in combination with low cost
DNA tests to detect HPV infections have been shown to reduce cervical cancer by
nearly 30%. To assist in this procedure, we developed an automatic, data centric
system for cervigram (photographs of the cervix) image analysis. In the first step
of our algorithm, our system utilizes nearly a thousand annotated cervigram im-
ages to automatically locate a cervix region of interest. Next, by utilizing both color
and texture features extracted from the cervix region of interest on several thousand
cervigrams, we show that our system is able to perform a binary classification on
cervigram images with comparable accuracy to a trained expert. Finally, we analyze
and report the effect that the color and texture features have on our end classification
result.

1 Introduction

Cervical cancer afflicts an estimated 12,200 women in the US [1] and 529,800
women worldwide [2] every year. Fortunately, it can be cured, if it is detected during
its early stages and treated appropriately. However, among the new cervical cancer
cases found worldwide each year, 85% of them are in developing countries [2]. This
disproportionate burden in low-resource world areas with medically underserved
populations is mainly due to the lack of screening. Screening can prevent cervical
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cancer by detecting Cervical Intraepithelial Neoplasia (CIN), also known as cervi-
cal dysplasia. The CIN classification is specified in several grades: CIN1 (mild),
CIN2 (moderate), and CIN3 (severe). In a clinical setting, one of the most important
goals of screening for cervical cancer is the differentiation of normal/CIN1 from
CIN2/3+. If a lesion is classified as CIN2/3+, it will require treatment whereas mild
dysplasia in CIN1 typically will be cleared by immune response in a year or so, and
thus can be observed or treated more conservatively.

To address the problem of CIN classification, we utilize a low cost, photographic
screening test, called Cervicography. The photographs of the cervix, or cervigrams,
can provide valuable and insightful information to assist in diagnosis and disease
grading. One of the most important observations in cervigrams is the acetowhite re-
gion which is caused by the whitening of potentially malignant regions of the cervix
epithelium after applying dilute (3-5%) acetic acid. All forms of precancerous tis-
sue exhibit some degree of opacity, or acetowhiteness, after contact with acetic acid.
Thus, accurately interpreting the severity of this tissue region is critically important
to cervigram image analysis. Additionally, other visual features or observations can
assist with disease classification. These features include the identification or pres-
ence of mosaicism, punctation, atypical vessels or vasculature, blood, polyps, cyst,
etc. However, as cervigram regions have very high variability in color, shape, and
size, it is difficult to identify and characterize these regions individually for both
trained medical professionals and computer algorithms.

2 Related Work

In recent years, there have been several automatic or semi-automatic image analysis
algorithms applied to cervigram images. A common process in many of these previ-
ous works was the automatic detection of the cervix region. This region of interest
(ROI) contains the relevant information necessary for accurate tissue and disease
classification. In Li et al. [13], the region of interest is found by the analysis of lo-
cal color features and optimized through expectation maximization. Zimmerman et
al. [18] developed a two-stage segmentation process utilizing image intensity, satu-
ration, and gradient information and reported their results on 120 images. Gordon
et al. [9] uses a Gaussian mixture model to automatically find the cervix region of
interest, and then separates the cervix tissue region into three types: the columnar
epithelium, the squamous epithelium, and the acetowhite region. Gordon et al. also
tested on a set of 120 cervigram images. Xue et al. [17] focuses on the removal of
specular regions and the identification of the acetowhite region in the ROI. Simi-
larly, Xue et al. tested on 120 cervigram images, and used L∗a∗b∗ color features,
Gaussian mixture models, and k-means clustering to achieve their results.

Further image classification tasks in the region of interest can be performed as
exhibited in several previous works. In Ji et al. [11], the authors use texture features
to recognize important vascular patterns found in cervix images. They collected 5
images per vascular pattern class (network, hairpin, punctation1, punctation2, mo-
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saic1, mosaic2) for a total of 30 images. Similarly, Srinivasan et al. [16] uses a filter
bank of texture models for recognizing punctation and mosaicism on ten images.

As demonstrated by the previous work, there are many complex visual features
that contribute to the problem of cervigram image analysis. The isolation of the
cervix region of interest is an important first step used to remove the unwanted
effects of the background image noise. Then, analysis of the region of interest can
be performed by looking at color and texture features. Color features play a key role
in the cervix and tissue classification task, whereas texture also plays an important
role in the identification of mosaicism and vessel pattern analysis. Further, given the
high variability exhibited by cervigrams, testing on larger datasets is necessary to
validate the effectiveness of cervigram image analysis on real world datasets.

3 Methodology

In our work, we develop a unique approach to cervigram image analysis. In contrast
to many previous works that utilize a more generative model towards cervigram
image analysis, we developed a discriminative, data centric system that would be
able to utilize similar cervigram cases in a collection of annotated cervigrams to
perform a binary classification, e.g. normal/CIN1 and CIN2/3+.

To be more explicit, we do not attempt to directly characterize the visual prop-
erties present in cervigram images. Instead, we utilize thousands of training images
collected by the National Cancer Institute (NCI) and National Library of Medicine
(NLM) to classify a new cervigram image. For this process, we will be utilizing two
distinct databases. The first database consists of 939 expertly labeled cervigrams.
There are detailed annotations linking these images to expert markings including
the delineation of the cervix region of interest. We will refer to this database as D1.
Our second database, D2, is of a larger scale and contains tens of thousands of pa-
tient records and cervigram images [10]. Each record also has been labeled with a
final outcome, which we can utilize in the classification stage of our system. The
final outcome is determined by expert practitioners and has been given a final di-
agnosis (normal/CIN1, CIN2/3+). These expert annotations of final diagonsis are
based on the analyzing the histology of the patient images, a commonly used gold
standard to define the ground truth diagnosis.

In summary, our system takes as input a new test cervigram image and uses large
amounts of training data to reach a final disease classification. This classification
result involves several steps. The first step is the translation of raw image data into
a compact color and texture feature representation. Using our representation, we
can then attempt to leverage our first database of annotated cervigrams to isolate
the cervix region of interest. Finally, we can again utilize our second database and
the specific visual features located in the ROI of a given cervix region to obtain a
final disease classification. By using the databases in our classification task, we are
indirectly utilizing the variables that went into the diagnosis of a patient cervigram
image, without having to individually model the complex visual characteristics.
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3.1 Visual Feature Extraction and Representation

Through our research, and as exhibited in many previous works, we have found that
both color and texture features are necessary to represent the visual cues present
in cervigram tissue regions (acetowhite regions, mosaicism, punctation, etc.). Addi-
tionally, the relative size and position of abnormal characteristics are also important
to capture in our feature representation. Thus, we utilize a spatial pyramid of color
and texture features as described in Lazebnik et al. [12]. This spatial pyramid repre-
sentation is able to preserve the geometric correspondence of visual features.

Color features - Color plays an important role in cervical lesion identification
and classification. One of the most important visual features on the cervix that have
relevant diagnostic properties is the presence of Acetowhite regions, or the whiten-
ing of potentially malignant cervical regions with the application of dilute acetic
acid. The perceived color and thickness of an Acetowhite region is also relevant to
cervical lesion grading. Thus, we extract pyramid color histogram features, PLAB,
from a cervigram image to represent various color regions. We convert the pixel
colors in a cervigram into the perceptually uniform L∗a∗b∗ color space. A property
of this color space is that a small change in the color value corresponds to about the
same small change in visual appearance. Our PLAB descriptor is also able to repre-
sent local image color and its spatial layout. For each channel (L∗,a∗, or b∗) of the
color space, we extract 3 pyramid levels, with a 16 bin histogram from each region.
A pyramid is constructed by splitting the image into rectangular regions, increasing
the number of regions at each level. Thus, a single channel histogram consists of
336 bins, and our complete PLAB descriptor consists of 1008 bins.

Texture features - Texture features play an important role in representing var-
ious vasculature patterns, punctation, mosaicism, and tissue thickness characteris-
tics. Similar to our color features, we represent texture as a pyramid histogram of
oriented gradients, or PHOG feature [4]. The PHOG descriptor represents local im-
age shape and its spatial layout. The shape correspondence between two images
can be measured by the distance between their PHOG descriptors using a spatial
pyramid kernel. To extract the PHOG descriptors from a cervigram image, we first
compute the gradient response using a sobel edge filter. If we use an 8 bin orienta-
tion histogram over 4 levels, the total vector size of our PHOG descriptor for each
image is 680 bins. For a illustration of our PLAB and PHOG feature, see Figure 1.

Image similarity measurement - To compute the image similarity, we use a
weighted sum of the similarities between the two images’ color and texture features.
The cost function that measures this dis-similarity, or distance, is defined as,

Cs(X ,Y ) = λ (d(Xc,Y c))+(1−λ )(d(X t ,Y t)) (1)

Where X ,Y represent two distinct images, Xc,Y c are the PLAB color feature vectors
of X and Y , and X t ,Y t are the PHOG texture features of X and Y respectively. The
distance between feature vectors is computed by d, and the λ term weights the
influence of the two features on the final similarity computation.
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(a) level = 0. (b) level = 1. (c) level = 2.

(d) 16 bins at level 0. (e) 64 bins at level 1. (f) 256 bins at level 2.

(g) level = 0. (h) level = 1. (i) level = 2.

(j) 8 bins at level 0. (k) 32 bins at level 1. (l) 128 bins at level 2.

Fig. 1 Example of the PLAB and PHOG features extracted at multiple levels in a rectangular
region of interest. In (a)-(c) the L∗a∗b∗ color space is sampled into 16 bins per region (per channel).
The L∗ channel in the PLAB feature vector is represented in (d)-(f). The edges of the input image
are computed by a sobel edge filter and partitioned into a pyramid of regions (g)-(i). 8 orientation
bins are extracted from each rectangle and concatenated into the PHOG feature vector represented
in (j)-(l).

For the distance measure between two histogram-like feature vectors, hX and hY ,
we use the χ2 measure defined as,

d(hX ,hY ) = χ
2(hX ,hY ) =

1
2

K

∑
k=1

[hX (k)−hY (k)]2

hX (k)+hY (k)
(2)

Where K is the total number of bins present in the feature vectors.
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3.2 Finding the Region of Interest

In the first step of our algorithm, we isolate the (cervix) region of interest in a new
cervigram. Given a new cervigram image our goal is to annotate a tight bounding
box around the cervix. Some previous works have used the local color and position
features in order to isolate the cervix region [9, 8, 17]. However, due to the high
variability in color, size, and position of the cervix in cervigrams, these approaches
based solely on local image features suffer from low specificity. In contrast, we take
a different approach to the region of interest detection problem. Our approach is
data driven; we rely on an expertly labeled database of 939 cervigram images with
their delineated rectangular regions of interest in order to find a suitable bounding
box for the region of interest in a new cervigram image.

We will refer to this step in our algorithm as our optimized bounding box
method, and is defined as the following. Given a new cervigram test image, we
extract the color and texture features from the whole image and compute the im-
age similarity between this image and every other image in our 939 database (D1)
by Equation 1. We sort the list of images in the database by decreasing similarity
and extract the top M matching cervigram images. These images should globally
resemble the test image; however, there is no guarantee that the cervix region of
the top images match the location and size of the test image. Thus, we only use the
top M matching cervigrams for their annotated ROI and use these ROIs as candi-
date bounding boxes. We denote the top M matching cervigrams’ ROIs as Bm where
m = [1...M], and our ground truth bounding boxes in D1 as D1

n, where n = [1...N].
Then, for every candidate bounding box, we recompute the color and texture fea-
tures of the test image inside the candidate ROI. We then compute the similarity
between each candidate bounding box and every ground truth cervix ROI in our
first database of N(=939) images. Among the MXN comparisons, we find the pair
of ROIs that gives the smallest distance, and the candidate ROI in this pair will be
our final ROI for the test image.

Mathematically speaking, we choose the minimum distance bounding box pair
to obtain our final ROI, B̂m,

< B̂m, D̂1
n >= argmin

<Bm,D1
n>

Cs(D1
n,Bm) n ∈ [1...N],m ∈ [1...M] (3)

3.3 Cervigram classification

Given the cervix region of interest, we can now more accurately match a test cervix
region to our database of cervigram ROIs. Our second database, D2, consists of
thousands of cervigrams that have been analyzed by experts and given a disease
diagnosis of CIN1 through CIN3. This data can be utilized to train a classifier which
will compute a disease classification for the given test image.
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We build two classification methods into our system, a support vector machine
classification and a majority vote classification.

3.4 Support Vector Machine classification

In D2, we compute the ROIs for every image, and extract their color and texture
features. We then build a binary linear classifier that can discriminate between nor-
mal/CIN1 and CIN2/3+ using a Support Vector Machine (SVM) [5]. We extract
our color and texture features from the cervix ROI and concatenate these vectors
into a single 1688 bin vector (1008 bin color vector + 680 texture vector). We can
build a SVM model based upon a subset of D2, which will attempt to separate the
two classes (normal/CIN1 and CIN2/3+) in a high dimensional space. Given a new
cervigram ROI, the SVM model can predict a CIN classification based upon the de-
cision boundary obtained by our training data. We describe the size of our training
and test set, as well as the parameters of our SVM model, and how we obtained
them in our results section.

3.5 Majority vote classification

For our majority vote classifier, we again compute the extracted color and texture
features in the cervix ROI. We can then compute a matching score between the test
cervix ROI and every other ROI in our second database. Using the matching score,
we can sort the similarity of the images to the new image and find the top Q most
similar cases. These top cases vote on a classification, where the majority vote label
is selected as the final output of our system. Mathematically speaking, given Q, the
top cluster of |q|= Q cases can be obtained by minimizing,

C(X) =
Q

∑
q=1

Cs(D̂2
q, B̂X ) q⊂ D2 (4)

Where D̂2 are the computed ROIs from our second database, and X is our test cervi-
gram, and B̂X is its corresponding ROI. When minimized, the set of q consists of the
top Q matches from our second database. Each q ∈ Q has a corresponding binary
label i.e. less than CIN2 or CIN2/3+, and will cast a vote for the final classification.
The majority vote label is assigned to the test image, X .
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4 Results

We perform several experiments to evaluate our system. Our first experiment mea-
sures how accurately we are able to isolate the cervix region of interest. Our second
experiment measures the ability of our system to correctly classify a new cervigram
image. Finally, our third experiment measures the effect that our color and texture
features have on the final outcome.

4.1 Isolating the region of interest

In this experiment, we analyze how accurately we are able to detect the region of
interest in a new cervigram image. This experiment tests on 450 cervigrams in D1,
but utilizes all of the 939 (minus the test cervigram, e.g. leave-one-out) expertly
annotated bounding boxes to obtain the final result as described in Equation 3. The
majority of the images are of the same size and resolution; however, there still is a
small amount of variability. Our features representations are normalized to account
for this variability.

To measure the accuracy of our region of interest calculation, we use the Jac-
card similarity coefficient defined as, J(A, B̂) = |A∩B̂|

|A∪B̂| which measures the similarity
of our bounding box calculation to the ground truth region of interest specified by
a trained physician. In this equation we can view A as the ground truth cervix re-
gion bounding box, and B̂ as the minimum bounding box found in Equation 3. In
essence, the Jaccard coefficient can be viewed as the area of intersection of bounding
boxes, divided by the total area covered by both bounding boxes. A Jaccard similar-
ity coefficient closer to one has a greater similarity to the ground truth; whereas, a
coefficient value close to zero has nearly no overlap area similar to the ground truth.
In this experiment, we compare three different methods.

1. Image Bounding Box (IBB) - In this method, we choose the most similar im-
age to the test image, based upon a global image similarity. The bounding box
is transferred from the top match to the test cervigram. This method does not
eliminate the noise present outside the region of interest.

2. Average Bounding Box (ABB) - This method again uses global image similar-
ity; however, we take the top K matches and average the position of their bound-
ing boxes to achieve our final bounding box. We used a gradient descent on the
Jaccard similarity coefficient (with respect to D1) to obtain the best K (= 15).

3. Optimized Bounding Box (OBB) - This is our method described in section 3.2
that utilizes candidate bounding boxes from a global image match. We compute
the final bounding box by finding the argmin in equation 3. For our experiments,
we set M to be 100 i.e. we have 100 candidate bounding boxes to choose from.

We show several sample images, their corresponding ground truth bounding boxes,
and the results of these three methods in Figure 2.
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(a) (b) (c) (d) (e)

(1)

ground truth ground truth ground truth ground truth ground truth

(2)

jsc: 0.583 jsc: 0.698 jsc: 0.475 jsc: 0.180 jsc: 0.465

(3)

jsc: 0.704 jsc: 0.775 jsc: 0.751 jsc: 0.676 jsc: 0.580

(4)

jsc: 0.823 jsc: 0.869 jsc: 0.514 jsc: 0.808 jsc: 0.819

Fig. 2 Sample region of interest calculations on five (a)-(e) images. The ground truth (1) and expert
annotations are shown here. The image bounding box (IBB) (2), average bounding box (ABB) (3),
and optimized bounding box (OBB) (4) and their corresponding Jaccard (jsc) coefficients are also
displayed. In column (c) row(4), we see a low Jaccard index, but visually close ROI calculation.

However, the Jaccard index does not describe the entire story. As seen in Figure
2(4)(c), the Jaccard index can be quite low, yet the cervix region may be more ac-
curately located than indicated. To further describe the accuracy of our cervix ROI
calculation, we compute the Euclidean distance between the ground truth centroid
position, and our computed ROI centroid position. Additionally, we record the dif-
ference of the aspect ratio between the ground truth bounding box and our computed
rectangle as further evidence. The aspect ratio is computed by the absolute differ-
ence between the width divided by height of the computed bounding box and the
width divided by height of the ground truth bounding box. In Table 1 we report the
average Jaccard index values, centroid difference, and aspect ratio difference. And
as seen from our results, our optimized bounding box method outperforms the other
two methods, and has the desired effect of maintaining a low centroid difference and
consistent aspect ratio.

4.2 Accuracy of our disease classification

In our second experiment, we utilize a subset of 2,000 cervigram images obtained
from the NIH/NCI database D2, consisting of 1,000 normal/CIN2 grade images and
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Table 1 Comparison of three different region of interest methods. We report the average
Jaccard index, centroid distance, and aspect ratio difference of the computed bounding box
and ground truth bounding box on 450 test images.

Method Jaccard Index (std) Centroid Dist. Aspect Ratio

Image Bounding Box (IBB) 0.611 (0.012) 32.37 0.148
Average Bounding Box (ABB) 0.699 (0.013) 23.91 0.109
Optimized Bounding Box (OBB) 0.736 (0.014) 25.72 0.096

std = Standard Deviation

1,000 CIN2/3+ cases. We perform a ten fold cross validation, binary classification
on this dataset to evaluate how well our system is able to differentiate between
these classes. We test using two classifiers, our majority vote classifier described in
section 3.5 and a linear Support Vector Machine described in section 3.4.

There are several parameters that need to be set for both classification methods.
For our majority vote technique, we train the number of voting cases, Q, by comput-
ing the Dice similarity coefficient, DSC = 2·T P

(2·T P+FP+FN) over our training set while
varying Q between the top matching case (Q = 1)to the top fifty (Q = 50) matches.
In the Dice similarity coefficient, T P denotes true positive cases, FP denotes false
positive cases, and FN are false negative cases. As we increase Q, the DSC score
steadily increases from 0.70 at Q = 1 and asymptotically approaches 0.75 when
Q > 30. Therefore, we set Q to be the top 33 most similar cervigram images to the
input image that will vote to obtain the final classification output of our system.
For the weight parameter of our color versus texture features (λ value), we chose
λ = 0.7. The analysis behind this value can be seen in the next section, Section 4.3.

For our linear SVM, we train the parameters of our model using a five-fold cross
validation on the training images, and use this model to classify the new input image.
The results of both our methods can be seen in Table 2. Additionally, in this table, we
also report comparative results from multiple studies around the world as reported
by Sankaranarayanan et al. [15]. In these studies, direct visual inspection of the
cervix was conducted after the application of acetic acid, and each patient is given
a result of positive or negative for CIN2/3+.

4.3 Weighted effect of Color and Texture

In our final experiment, we view the effects of the color and texture features on
our final classification result. Using our majority vote classifier, and altering the λ

in equation 1, we can evaluate the influence of these features. As a baseline data
point, a value of λ = 0.5, gives both color and texture features equal weight. On
a set of 1,000 cervigram images from D2 (500 normal/CIN1, 500 CIN2/3+), we
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Table 2 Comparison of Sensitivity, and Specificity for different classification methods for
detecting CIN2/3+. Our automatic classification method is comparable to manual inspection
by experts.

Method Samplesa Sensitivity,% (95% CI) Specificity,% (95% CI)

Our automatic methodb, Majority Vote 2,000 73 (65-81) 77 (67-87)
Our automatic methodb, L-SVM 2,000 75 (69-82) 76 (66-86)
Denny et al. [6], 2000, South Africa 2,885 67 (56-77) 84 (82-85)
Belinson et al. [3], 2001, China 1,997 71 (60-80) 74 (71-76)
Denny et al. [7], 2002, South Africa 2,754 70 (59-79) 79 (77-81)
Sankaranarayanan et al. [14], 2004 In-
dia and Africa

54,981 79 (77-81) 86 (85-86)

a Samples for our method are number of distinct cervigram images. Samples for the com-
parative studies correspond to number of patients.
b Confidence intervals calculated by ten-fold cross validation
CI = Confidence Interval

vary the parameter from 0 - 1, where a λ of less that 0.5 gives more weight to our
texture feature and a λ of greater than 0.5 gives more weight to our color feature.
We analyze how this parameter affects our sensitivity and specificity of our majority
vote classifier on dataset, D2 and display the results in Figure 3.

Fig. 3 The effect of changing our λ value between 1 - 0 when using a majority vote classifier.
A balanced weight of 0.5 has equal contribution of color and texture, whereas a value closer to 1
favors the color feature. Empirically, a λ value of 0.7 has the best specificity and sensitivity on D2.

From these results it is clear that the color feature plays a vital role in the CIN
designation for cervigram images. By using the color feature alone (λ = 1), we are
still able to achieve fairly good results, but if we only use texture features (λ = 0),
our sensitivity and specificity drop dramatically.
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5 Discussion and Conclusion

We present an automatic cervigram image analysis algorithm that is able to isolate
the region of interest in a new cervigram image, and ultimately classify the image as
less than CIN2 or CIN2/3+. Our system is data centric, meaning we do not attempt
to directly model the complex features present in the cervix anatomy, but rather uti-
lize thousands of training images to perform our analysis. Furthermore, our system
performs well, and is shown to be comparable to human observers. To improve our
results, we have been exploring multi-modal classification methods by utilizing pa-
tient data such as patient age, HPV types (16/18/31), and health behavior (history of
smoking). Another possible improvement would be the use of vector weights to find
the optimal balance of color and texture. Because a color change of the acetowhite
region has a high correlation to the severity of a CIN classification, this would sug-
gest that a color feature would be important in cervigram image analysis. Through
our experiments, we were able to confirm that color does in fact play a vital role in
the CIN classification task.
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