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color space. A property of this color space is that a small
change in the color value corresponds to about the same small
change in visual appearance. The PLAB feature is also scale-
invariant thus the scale of the region of interest does not
affect color similarity computation. For each channel (L*, a*,
or b*) of the color space, we extract a 128-bin histogram.
Concatenating the three channels together yields a total feature
vector of 384 bins.

To compute the similarity between the cervix regions of
interest of two images, we measure the numerical similarity
between the ROI feature vectors. Each of the histograms com-
prising the PHOG or PLAB feature has been range normalized
and then we fuse all the texture and color features into a 1064
bin histogram to represent a ROI. In this final representation
of our feature vector, there are several multi-modal fusion
methods, each with their own benefits and drawbacks. In the
early fusion approach, the color and texture feature vectors
are combined early and used as a single representative feature
vector in the image similarity computation. This method can
capture the interactions between modalities; however, early
fusion can be problematic with heterogeneous data, scales,
and length distributions, as is the case with our PHOG texture
feature and three-channel color feature. We employ a late
fusion technique where each modality’s similarity is first
computed independently and then combined in a weighted
distance measurement. The first 680 bins of our 1064 bin
histogram (corresponding to PHOG texture feature) has full
weight (1.0) in the similarity metric computation and each
of the next 128 bin chunks (corresponding to three color-
channel features) contributes one-third of the weight towards
the similarity metric. Thus the final similarity measurement
treats the texture and color features equally and also gives each
color channel equal weight. This late fusion method alleviates
the problems that early fusion has with heterogeneous data
and is more extensively studied in the literature [61].

And as described above, we can use the normalized measure
(Equation 4) to obtain a similarity score between two cervix
ROIs. Since each patient typically has multiple cervigrams
taken at multiple visits, the overall image similarity between
two patients is measured by computing the average similarity
between the ROIs of all pairs of images of the two patients.
That is, the image-based patient similarity is defined in Equa-
tion 5:

Image Sim(a, b) =
1

N

∑
s∈I(a),q∈I(b)

Simimage(s, q) (5)

where a, b are two patients, the function I(p) returns the
set of cervigram images for patient p, N is the total number
of image pairs, and the similarity score between two images
Sim image(s, q) is defined in Equation 4. Our image-based
patient similarity score can now be used in conjunction with
our data-level similarity score to measure the aggregated
similarity between patients.

E. Patient Classification by Aggregating Image and Data
Similarity

In this section, we describe how to augment patient data that
are traditionally used in clinical testing with the cervigram
image data. Our hypothesis is that the aggregation of these
two sources of data should significantly improve the sensitivity
and overall accuracy of the classifier in detecting high-grade
cervical lesions compared to using either type of data alone.

1) Aggregating Data and Image Similarity: For combining
these two heterogeneous types of data, we define an
aggregated similarity metric over the data similarity
Data Sim(G(a), G(b)) (computed by Algorithm 1) and
the image-based similarity Image Sim(a, b) (described in
Section II-D). The aggregated similarity metric sim(a, b) for
patients a and b is defined in Equation 6:

sim(a, b) = α×Data Sim(G(a), G(b))+

(1− α)× Image Sim(a, b) (6)

The parameter α is a weighting factor that represents how
important Data Similarity is in the aggregation process.

In order to determine the value for α in Equation 6, one
approach is to manually assign weights and find the weight
that gives us the best performance. In contrast, we could also
automatically learn the optimal weights for combining Data
Similarity and Image Similarity. In this paper, we employ a
gradient-based learning approach [62], [63]. Specifically, we
separate some of our data as validation data and use these
data to find the optimal weights for Data Similarity and Image
Similarity. We start with an initial α value (0.0), and then keep
incrementing α value as long as the accuracy on the validation
data does not drop significantly and current α value equals or
is below 1.0. (In our current implementation, we keep trying
the next α value as long as the accuracy does not drop more
than 2%.) And among all the tested α values, we assign the
value that produces the highest accuracy on the validation data
to be our weight for Data Similarity. We then apply the learned
weight to our testing data for classification.

One potential drawback of this gradient-based approach is
that the process may fall into a local maximum of accuracy.
In our evaluation later (Section IV), we perform multiple
experiments where we start with different initial values for
α in Equation 6 and show that the achieved accuracies by
using different initial values are very similar.

2) Determining Weights for Different Clinical Tests within
Data Similarity: In order to compute Data Similarity, one
could manually assign weights to different clinical tests;
however, approaches that can automatically learn the relative
importance of different tests are preferred. In this paper,
we employ an information gain-based learning approach to
automatically calculating the weights for different clinical
tests, i.e., Cytology (C), HPV (H), Age (A) and pH value (P),
in order to compute Data Similarity. We treat each clinical
test as a feature and compute the information gain [64]
of different features with respect to the class label of the
training samples. We then use the computed information gain
values as the relative weights of the clinical test features. The
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Data Similarity is then calculated as the weighted average of
similarities from all clinical test results.

3) Patient Classification: Our classification task is a binary
classification task: whether a new patient pn will be classified
as <CIN2 (Negative) or CIN2/3+ (Positive). Conceptually our
patient repository can be seen as a case base (CB) of cases,
where each case has the form (p, c) where c is the class (i.e.,
Negative or Positive) of the patient p.

Algorithm 2 Classification of a new patient pn given a case
base CB

1) CBn ← ∅
2) for each (p, c) ∈ CB do
3) CBn ← CBn ∪ (sim(p, pn), c)
4) end for
5) CL← KMeansCluster(CBn)
6) tC ← topCluster(CL)
7) return majorityVote(tC)

We combine lazy and eager learning approaches [65] for
our classifier as shown in Algorithm 2. First we initialize an
auxiliary case base CBn (Step 1). Then, CBn is filled with
pairs, in the format of (sim, c), of similarities between each
patient p in the case base CB and the new patient pn as well
as the class label for p (Steps 2-4). We then apply K-means
clustering on CBn; the clusters are grouped by the similarity
scores (Step 5). Finally, we return the class that occurs the
most amongst cases in the top cluster (Steps 6 and 7). If there
is a tie, a random selection is done among the classes that
most frequently occur in the top cluster.

Note that K-means clustering was applied to the computed
similarities between a testing case and all the training cases.
Specifically, for a testing case, we compute its overall sim-
ilarity (i.e., a weighted combination of Data Similarity and
Image Similarity) to all training cases; thus, we have a list of
similarity values (floating values). We then apply K-means
to these similarity values to find the top cluster, i.e., the
cluster that has the highest similarity values. After this, we do
majority vote on training cases in the top cluster to determine
the label of this testing case.

As for the size of CB, it includes all the training patients.
In our experiments, we have 280 patient cases in total, and we
divide them into 10 folds (28 cases in each fold). When we
apply learning to determine the α value (in Equation 6) for
combining Data and Image Similarity, we use 1 fold of cases
as development/validation data to learn the parameter, use 1
fold for testing, and put the remaining 8 folds (224 cases) in
the CB for training. When we do not use learning to set α but
adopt a default value (e.g., setting α=0.2), we use 1 fold for
testing and have the remaining 9 folds (252 cases) in the CB
for training.

III. EXPERIMENT

A. Evaluation Metrics

As stated above, we evaluate our proposed system in a
binary classification scenario, i.e., we classify a patient to be
either <CIN2 (Negative) or CIN2/3+ (Positive). We measure

the accuracy, sensitivity and specificity of our proposed multi-
modal patient classifier (see Algorithm 2). The definitions for
these metrics are given as follows:

Accuracy =
|correctly classified patient cases|

|test cases|
(7)

Sensitivity =
|true positive|

|true positive|+ |false negative|
(8)

Specificity =
|true negative|

|true negative|+ |false positive|
(9)

where true positive refers to the set of patients who fall into
the class “Positive” and are correctly classified; false negative
refers to the set of patients who fall into the class “Positive”
but are misclassified as “Negative”; true negative and false
positive are similarly defined.

Following a standard of evaluating machine learning sys-
tems, we perform a ten-round ten-fold cross validation on
our dataset of 280 patient cases (Table I). In each round, we
randomly divide the patient cases into ten folds; in a rotational
manner, we use one fold for testing and the 9 remaining folds
for training; the testing result for the round is the average of
the testing results for each of the ten folds. The final testing
result is the average accuracy/sensitivity/specificity of the ten
rounds.

We also test the statistical significance between the results
of our proposed system and other systems on our dataset. In
this paper, we compare each pair of systems through the ten
rounds and perform a two-tailed t-test on the two sets of results
from the systems.

B. Multi-modal Entity Classifier vs. Data/Image-only

In this experiment, our goal is to examine the effective-
ness of different types of information in the cervical cancer
patient classification task, including Cytology, HPV, patient
age, pH value and cervigrams (digital images). We first test
the individual effectiveness of Cytology, HPV and cervigram,
i.e., only using one of the three types of information for
classification, and compare their performance. Furthermore,
we perform classification by combining different types of
information, e.g., using Cytology, HPV, age, pH, cervigram
together, and then compare the classification accuracy using
these combinatory tests with that of using a single type of
information.

In the Guanacaste dataset used in our experiments, the
possible values for Cytology include Normal, Rctive, ASCUS,
Koil. Atyp, CIN 1/2/3, Micrinv Cncr and Inv Cancer. There
are two components to HPV: (1) HPV Signal, which is a
floating value ranging from 0.0 to 5.0, and (2) HPV Status,
which can be either Negative or Positive. Patient age is a
numeric value ranging from 15 to 100. pH value is another
numeric value ranging from 1.0 to 14.0. When computing
data-level similarity, Equation 1 is used to calculate similarity
between numeric-value features (such as HPV signal, age,
and pH value), and Equation 2 is used to calculate similarity
between textural/string-value features (such as Cytology and
HPV status). Equation 3 is applied to compute image-based
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similarity between patients cervigrams. Then data-level and
image-based similarities are aggregated according to Equation
6. By retrieving similar patient cases from an annotated
database based on aggregated similarity, a new patient can
be classified following Algorithm 2.

1) Manual Weight Assignment for Integrating Data and
Image Similarity: In our first experiment, we treat all clinical
test results equally to compute Data Similarity. Then we
manually assign the weights for integrating Data and Image
Similarity, i.e., manually varying the value for α in Equation 6
between [0, 1], to find the weights that give the best accuracy.
Please see all the “Manual” columns in Table II for results
from this experiment.

In general, compared to systems that use textual/numeric
data-only or use images-only for patient classification, our pro-
posed system that aggregates the data and image similarities
significantly improves accuracy over systems that use fewer
information sources. Please note that the performance numbers
in Table II are the average accuracy/sensitivity/specificity from
ten-round ten-fold cross validation using 280 patient cases.

First of all, the Image-Only (I) patient classification gave
overall accuracy 81.93%, sensitivity 74.14% and specificity
89.71%. These results are better than classification using
Cytology (C) alone, HPV (H) alone, even both Cytology and
HPV (C+H). This demonstrates the great potential of using
computer-assisted interpretation of photographic images as an
adjunctive screening and diagnosis test for cervical cancer.
Then, by integrating multiple clinical tests and images, the
overall best accuracy was 86.86% and it was achieved by
applying Multi-Modal patient classification using the com-
bination of Cytology, HPV, pH, and images (C+H+P+I). In
comparison, using clinical data-only (C+H+A+P), the accu-
racy was 80.07%, using C+H+P only achieves an accuracy of
78.79%, and using image-only (I), the accuracy was 81.93%.
The results here are statistically significant with 95% confi-
dence. This demonstrates the effectiveness of combining both
data and image similarities for patient classification. For both
accuracy and sensitivity, a two-tailed t-test on the results
between “C+H+P+I” and “C+H+P” or “I” gave a P value
of 0.0001. Although no significant difference was observed
between “C+H+P+I” and “C+H+P” on specificity, both of
them have higher specificity than “I”, with a P value of 0.0001.

Furthermore, we also show how the accuracy, sensitivity and
specificity of C+H+P+I change by adopting different weights
to Data Similarity, as demonstrated in Figure 9. One can
see that, starting with zero weight to Data Similarity and by
gradually increasing the relative weight of Data Similarity, we
gradually achieve better performance for all three metrics and
the best results are achieved by assigning a value of 0.2 to
0.3 for Data Similarity. By only using Image (α=0.0) or Data
(α=1.0), the performance is not as good as by integrating both
types of information.

2) Automatic Learning of Weights: Instead of treating
all clinical tests equally and manually assigning weights to
Data Similarity and Image Similarity, here, we present our
evaluation results by adopting an information gain based
approach for learning relative weights between data terms
and a gradient-based approach for learning relative weights
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Fig. 9. Accuracy, Sensitivity and Specificity by Manually Varying the Weight
for Data Similarity in Equation 6

between Data Similarity and Image Similarity.
Please see all the “IG” columns in Table II for re-

sults using the information gain-based approach to learn-
ing relative weights between clinical tests (i.e. data terms).
One can see that, using information gain-based learning,
C+H+A+I achieved the best accuracy of 87.43%, which is
even higher than the best accuracy under “Manual” (achieved
by C+H+P+I). Moreover, compared to the highest sensitiv-
ity of “Manual” (achieved by C+H+P+I), C+H+A+I using
information gain gives a sensitivity that is 1.79% higher
than the best under “Manual”. Comparing C+H+A+I to itself
across “Manual” and “IG”, for both accuracy and sensitivity,
the improvements by IG are significant with P values of
0.0017 and 0.0003 respectively. Also, among the 12 systems
in Table II, by using information gain-based learning method,
8 of these systems were able to achieve higher accuracy
than the corresponding systems under “Manual”. The results
here demonstrate the effectiveness of utilizing information
gain for learning the weights of different clinical tests. One
interesting observation is that, in this experiment, C+H+A+P+I
has exactly the same performance as C+H+A+I. This can be
explained by the fact that the calculated weight (information
gain) for P (pH) is 0, indicating that P does not provide any
added value for our classification task.

Please note that, for results shown under the “IG” columns
in Table II, we automatically learn the weights for different
clinical tests but still manually assign the weights between
Data and Image Similarity. Figure 10 shows how the accuracy,
sensitivity, and specificity of C+H+A+I change by varying the
weight for Data Similarity (i.e. α in Equation 6). Similar to the
results in Figure 9, the best accuracy was achieved by setting
the weight of Data Similarity to 0.2.

Next, rather than manually tuning the weights for Data
and Image Similarity, we discuss the results of employing
our gradient-based method for learning such weights. As
discussed in Section II-E1, we need to separate some data
out as validation data so that we can learn the optimal weight
from the validation data. In our current experiments, we use
1 fold (i.e. 28 patient cases) for validation, 1 fold for testing,
and use the other 8 folds for training. Using our gradient-
based learning approach, the learned optimal weight of Data
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TABLE II
PERFORMANCE OF MULTI-MODAL (BOTH CLINICAL DATA AND IMAGE), DATA-ONLY AND IMAGE-ONLY CLASSIFICATIONS

(C: CYTOLOGY; H: HPV; I: IMAGE; A: AGE; P: PH)
(AC: ACCURACY; SE: SENSITIVITY; SP: SPECIFICITY)

(MANUAL: MANUALLY DETERMINE WEIGHTS FOR DATA AND IMAGE SIMILARITY, AND TREAT ALL CLINICAL TESTS WITHIN DATA SIMILARITY
EQUALLY; IG: AUTOMATICALLY LEARN THE WEIGHTS FOR DIFFERENT CLINICAL TESTS WITH INFORMATION GAIN; IG+GRADIENT: UTILIZE IG AND

ALSO ADOPT GRADIENT-BASED LEARNING APPROACH TO AUTOMATICALLY DETERMINE THE WEIGHTS FOR DATA AND IMAGE SIMILARITY)

System Manual IG IG+Gradient
AC(%) SE(%) SP (%) AC(%) SE(%) SP (%) AC(%) SE(%) SP (%)

C 66.36 36.79 95.93 61.70 25.16 98.21 N/A N/A N/A
H 74.99 56.54 93.43 75.06 56.71 93.42 N/A N/A N/A
I 81.93 74.14 89.71 N/A N/A N/A N/A N/A N/A

H+I 85.89 80.21 91.57 86.07 80.57 91.57 87.79 82.79 92.82
C+I 83.04 71.29 94.79 83.21 71.43 95.00 84.93 74.14 95.71
C+H 76.25 58.64 93.86 76.86 60.14 93.57 N/A N/A N/A

C+H+I 85.71 77.07 94.36 86.21 78.36 94.07 88.29 81.43 95.14

C+H+P 78.79 64.29 93.29 76.86 60.14 93.57 N/A N/A N/A
C+H+P+I 86.86 80.21 93.50 86.21 78.36 94.07 88.29 81.43 95.14
C+H+A 79.32 65.93 92.71 79.54 67.79 91.29 N/A N/A N/A

C+H+A+I 86.57 80.00 93.14 87.43 82.00 92.86 89.00 83.21 94.79

C+H+A+P 80.07 68.93 91.21 79.54 67.79 91.29 N/A N/A N/A
C+H+A+P+I 86.14 80.21 92.07 87.43 82.00 92.86 89.00 83.21 94.79
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Fig. 10. Accuracy, Sensitivity and Specificity after information gain based
weighting of data terms and by varying the weight for Data Similarity in
Equation 6

Similarity is 0.176, which is generally consistent with our
manual tuning results (Figure 9 and Figure 10).

Please see all the “IG+Gradient” columns in Table II for
results using both gradient-based learning (to optimize α)
and information gain based learning (to combine data terms).
Because the gradient-based learning method is designed to
integrate the two high level similarities: Data Similarity and
Image Similarity, systems that only use Data or Image Sim-
ilarity are not affected, including C, H, I, C+H, C+H+P,
C+H+A, C+H+A+P; for these systems, we put “N/A” as their
performance under “IG+Gradient” columns.

From Table II, we can see that by adopting both information
gain and gradient-based learning approaches, C+H+A+I now
has the best accuracy at 89.00% and also the highest sensitivity
at 83.21%. Comparing C+H+A+I to itself between “IG” and
“IG+Gradient”, a two-tailed t-test shows that the difference
on both accuracy and specificity are statistically significant
with a P value of 0.0001; the difference on sensitivity is also
significant with a P value of 0.0313. The experimental results
here demonstrate the effectiveness of adopting both learning-
based approaches for automatic weight learning. It also shows

that the best performance is achieved not by using all cues but
by selecting the best subset of cues, i.e. C+H+A+I (Cytology,
HPV, patient age, and image) under “IG+Gradient” columns.

Furthermore, we also compare C+H+A+I to other systems
that also adopt “IG+Gradient”. For accuracy, statistically, the
differences between C+H+A+I and C+I/H+I are significant
with P values of 0.0001 and 0.0012 respectively; although
C+H+A+I has higher accuracy than C+H+I, the difference is
not significant with a P value of 0.0530. For sensitivity, we
have similar results and the differences between C+H+A+I and
C+H+I/C+I are significant with P values of 0.0212 and 0.0001
respectively. We think the results here verify the benefits of
using multiple types of information together for perform-
ing our cervical cancer classification task. In Table II, for
“IG+Gradient”, although C+H+A+I also has better sensitivity
than H+I (0.42% higher), the results are not significant with
a P value of 0.4335.

C. Comparison to alternate State-of-the-art Systems
In addition to comparing between our own systems, in this

section, we compare our best system (C+H+A+I by using
IG+Gradient) to several other published alternate approaches.
We summarize the comparison in Table III1.

TABLE III
PERFORMANCE COMPARISON BETWEEN OUR PROPOSED METHOD AND

SEVERAL OTHER PUBLISHED ALTERNATE APPROACHES
(AC: ACCURACY; SE: SENSITIVITY; SP: SPECIFICITY)

Computerized System AC(%) SE(%) SP (%)
Multi-Modal (our proposed method) 89.00 83.21 94.79

Kim et. al, Majority Vote [53] 75* 73 77
Kim et. al., SVM [53] 75.5* 75 76
DeSantis et. al. [66] 71.3* 95 55
Chang et. al. [67] 82.39* 72 83

ThinPrep [17] 81.36∼95.75* 79∼82 98∼99
BD FocalPoint GS Imaging System [16] N/A 81∼86 85∼95

We first compare our proposed system Multi-Modal to state-
of-the-art imaging systems for cervical cancer detection. The

1*The accuracy values marked with an asterisk were derived from data
provided in those papers.
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systems by Kim and Huang [53] perform cervical cancer
detection by analyzing cervigram images. They utilize pre-
annotated images for automatically locating the region of
interest (ROI) on the cervix; then, by extracting color and
texture features from the cervix ROI, the systems were able to
achieve comparable accuracy to a trained expert. However, by
only using image for classification, both of the systems have
lower performance than our proposed Multi-Modal method.

Next, we compare our proposed system with imaging tech-
niques designed for assisting the cervical cancer diagnosis
process. Desantis et. al. [66] examined the potential of using
tissue spectroscopy for the diagnosis of cervical cancer. They
used a prototype device made by Guided Therapeutics, Inc,
Norcross, GA for taking spectroscopy measurements. Then
such collected images and other relevant data (such as Pap
result and patient demographic information) are processed and
analyzed by a diagnostic algorithm to produce the final result,
i.e., whether this patient has cancer or not. This is the most
similar system to our proposed approach. Instead of only using
image analysis techniques, it tries to combine different modal-
ities together for diagnosis. This system achieved satisfactory
sensitivity (95%); however, it has a high false-positive rate
(i.e., low specificity), which could potentially cause patients
to encounter unnecessary and costly diagnostic procedures and
even treatments. Chang el. al. [67] try to analyze the diagnostic
potential of utilizing reflectance and fluorescence spectra to
discriminate normal and precancerous cervical tissue. They
examined different combinations of spectral features and uti-
lized the features in classification algorithms for evaluating the
diagnostic performance of different feature sets. This system
achieved a similar sensitivity to our proposed Multi-Modal
system; however, the specificity of their system is significantly
lower than that of our system. Thekkek and Richards-Kortum
[68] summarized results from previous similar studies.

Feature selection and fusion are important aspects of classi-
fication problems since using a suitable set of features can sig-
nificantly improve the final classification accuracy. Zhang et.
al. [69] designed a feature selection algorithm for choosing the
most effective features for image annotation; Gehler et. al. [70]
proposed an algorithm for learning the correct weighting of
different features for multi-class classification. In our system,
using automatically learned weights also greatly improved our
classification accuracy.

Recent developments in industry have also led to imaging-
based cervical cancer diagnosis systems, such as ThinPrep [17]
and BD FocalPoint GS Imaging System [16]. The ThinPrep
Imager (Cytyc) system, a computerized system for reading
slides, is a new technology applied to liquid based cytology.
The imager identifies 22 fields of interest most likely to contain
abnormal cells, which are then examined by a cytologist. The
system from BD [16] implements a similar idea. Compared to
these two commercial systems on the market, our proposed
Multi-Modal was able to achieve comparable performance,
except that the specificity of our system is lower than that of
ThinPrep. However, there are two advantages of our system
over these two commercial systems: 1) Our system is able to
integrate multiple clinical tests and images to achieve better
performance and also can produce a diagnosis directly from a

photograph of a cervix; 2) Our system is more applicable in
resource poor regions and also better suited for tele-medicine.

In addition to systems that perform cancer diagnosis, al-
gorithms were also proposed for detecting lesion regions.
Alush et. al. [71] and Park et. al. [72] developed systems
for automated lesion detection and segmentation. Yu et. al.
[73], Zhang et. al. [74] and Gordon et. al. [75] proposed
algorithms for segmentation of cervical images. Although
these works are not performing end-to-end cervical cancer
diagnosis, accurately detected lesion regions and other regions
of interest in cervigram images can be further analyzed to
assist with the diagnosis process. In our current approach,
being able to accurately recognize the region of interest (ROI)
is also important for calculating image similarity in order to
facilitate the final classification task.

D. Effectiveness of Domain Knowledge
In this experiment, we show that adopting domain knowl-

edge (DK) for computing data-level string similarity (Equation
2), can significantly improve the results as shown in Table
IV. For this experiment, we use C+H+A+I, the best-performer
according to Table II (i.e., combining Cytology, HPV, and the
patient age information together); and we adopt both informa-
tion gain and gradient-based learning approaches. Since adding
domain knowledge will not affect Image-Only classification,
it is not compared here.

TABLE IV
IMPACT OF DOMAIN KNOWLEDGE ON CLASSIFICATION RESULTS

(AC: ACCURACY; SE: SENSITIVITY; SP: SPECIFICITY)

System AC (%) SE (%) SP (%)
Multi-Modal (C+H+A+I) 89.00 83.21 94.79
Multi-Modal (C+H+A+I) no DK 87.04 79.21 94.86
Data-Only (C+H+A) DK 79.54 67.79 91.29
Data-Only (C+H+A) no DK 76.76 65.74 87.82

We can see that adopting domain knowledge helped to
achieve significant improvements, particularly in accuracy and
sensitivity for both C+H+A+I and C+H+A classification. For
accuracies, the differences here are statistically significant with
a P value of 0.0003 between Multi-Modal and Multi-Modal
no DK, and a P value of 0.0001 between Data-Only and Data-
Only no DK. For sensitivity, we also observe results that are
statistically significant: a P value of 0.0005 between the two
Multi-Modal systems, and a P value of 0.0001 between the
two Data-Only systems. This verifies our assumption that in
this domain, syntactically different strings could actually be
semantically close to each other; therefore, it is important to
capture such semantic similarity. In our current work, such
semantic similarity is exploited by utilizing the index integers
assigned to strings in the NLM-MDT database, assuming
semantically similar test-result strings will be assigned close
indices. In future work, we plan to explore how to compute
semantic similarity of two strings by using some dictionaries
or ontologies in the domain [76].

E. Comparing Different Classification Schemes
As presented in the section on Patient Classification, our

classification scheme involves retrieving similar patient cases
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from a case database, performing K-means clustering on the
similar cases, and adopting the class label as voted by a
majority of cases in the top cluster. For K-means clustering
(Step 5 of Algorithm 2), we tried different K values and found
K=5 to be a good choice given our training case base of size
252. Note that our training case base has a size of 224 because
there are 280 cases in total and in each round of 10-fold cross
validation, 1 fold (28 cases) is used for development, 1 fold
(28 cases) is used for testing and the rest 8 folds (224 cases)
are used for training.

Alternatively, instead of majority voting by cases in the
top cluster, we could compute the average (or maximum)
similarity between a test case and all training cases in each
class, and then assign to the test case the class label with
maximum similarity. We compared these alternatives in Table
V for Multi-Modal classification using Cytology+HPV+Age
(as Data) as well as images, i.e., C+H+A+I, the best-performer
according to Table II; and we utilize both information gain and
gradient-based learning approaches.

TABLE V
PERFORMANCE COMPARISON FOR MULTI-MODAL CLASSIFICATION WITH

DIFFERENT CLASSIFIERS
(AC: ACCURACY; SE: SENSITIVITY; SP: SPECIFICITY.)

(CLUSTER: MAJORITY VOTING BY CASES IN TOP CLUSTER;
AVG: AVERAGE SIMILARITY TO CASES IN EACH CLASS;

MAX: MAXIMUM SIMILARITY TO CASES IN EACH CLASS.)

Classifier AC (%) SE (%) SP (%)
Cluster 89.00 83.21 94.79
Avg 84.36 71.93 96.79
Max 85.50 82.36 88.64

The results show that majority voting by top cluster gives
both the best accuracy and sensitivity. Statistically, on accu-
racy, the differences between Cluster and other classification
schemes (Avg and Max) are significant with a P value of
0.0001. On sensitivity, the difference between Cluster and Avg
is significant with a P value of 0.0001.

F. Summary of Results

In summary, we have developed a computer-assisted algo-
rithm that interprets cervigrams based on color and texture.
The algorithm yields 74% sensitivity and 90% specificity in
differentiating CIN2/3+ from <CIN2, on a dataset involving
280 randomly selected patient cases. In comparison, using Pap
test alone gives sensitivity 37% and specificity 96%, and using
HPV test alone gives sensitivity 57% and specificity 93%, on
the same dataset. When computer assistance is not used, the
sensitivity for detecting CIN2/3+ was 39%, as reported by a
study that had 20 expert colposcopists visually assess digital
cervical images [33].

Furthermore, Our framework enables the efficient evaluation
of the performance of various combinatory tests. A novel
combinatory test, which integrates multiple modalities–Pap,
HPV, information derived from Cervicography images, and
patient age, yields about 83% sensitivity and 95% specificity, a
statistically significant improvement over any single modality
or other combinatory tests derived from proper subsets of these
four modalities. Our results demonstrate the potential of using

computer interpretation of cervical images as an adjunctive
test to Pap and HPV in cervical cancer screening.

IV. DISCUSSION

In this paper, we presented a data-driven approach for cer-
vical dysplasia diagnosis using images and other clinical test
results. Patient data are represented in a hierarchical tree-like
data structure. Patient comparison is performed through an en-
tity coreference algorithm that compares two entities through
similarity between “comparable data chains” without incurring
penalty for unmatchable data chains; thus our method naturally
handles unbalanced data. Compared to existing cervical image
analysis methods that only perform processing or segmentation
of cervigrams without patient classification [27], [35]–[37],
[39], [54], [55], our cervigram image interpretation algorithm
is able to produce a cervical dysplasia diagnosis (either <CIN2
or CIN2/3+) with high accuracy. Furthermore, our novel multi-
modal Entity Coreference algorithm can effectively compute
the similarity between patients utilizing their hierarchical
representation of heterogeneous data including cervigram im-
ages, Pap, HPV, pH and other clinical test results. Both our
multi-modal and image-alone classification schemes achieve
similar or better sensitivity and specificity when compared to
other methods for cervical disease classification [72], [77];
furthermore, while these other methods were tested on several
dozen patient cases, our system is tested on a much larger set
of 280 patient cases.

Regarding the cervical cancer screening application, our
work has demonstrated the potential of Digital Cervicography,
which produces cervigram images, as a low-cost and widely
accessible screening method with reasonable accuracy, when
augmented by computerized interpretation of cervigrams and a
large database of expertly annotated patient cases and images.
It has also shown that integrating images with other clinical
information can improve the accuracy in differentiating low-
grade cervical lesions from high-grade lesions and invasive
cancer. By using only digital cervigram images, our proposed
system achieved 74.14% sensitivity for detecting CIN2/3+
lesions; and by using images and 3 other clinical test results
(Cytology, HPV, age), our system achieved 83.21% sensitivity.
In comparison, the commonly used Pap test screening highly
depends on the expertise of laboratory personnel as well as
workplace infrastructure; as shown in Table VI, its sensitivity
for detecting CIN2/3+ lesions varies widely in different geo-
graphic regions: 18%∼20% in Germany [14], 22%∼24% in
Chile [7] , 26%∼43% in Peru [9] , 42%∼56% in Canada [10],
57% in Africa and India [11], 63%∼86% in Costa Rica [12]
, and 77% in the United Kingdom [13]. As one can see, the
sensitivity levels of our system match the best results reported
in clinical literature, which shows the potential of using our
system for cervical cancer screening and diagnosis.

Another interesting observation from our experimental re-
sults in Table II is that adding patient age information
improved the sensitivity of the system by sacrificing some
specificity and therefore enabled the system to achieve bet-
ter overall classification accuracy when combining all infor-
mation together. Comparing C+H+A+I to C+H+I, C+H+A
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TABLE VI
COMPARING TO CERVICAL CANCER DIAGNOSIS THAT USES PAP TEST

System/Clinical Trial Sensitivity(%) Specificity(%)
Multi-Modal 83.21 94.79
Image Only 74.14 89.71

Schneider et. al., Germany [14] 18∼20 99
Ferreccio et. al., Chile [7] 22∼24 99
Almonte et. al., Peru, [9] 26∼43 38∼99

Mayrand et. al., Canada [10] 42∼56 97∼99
Ferreccio, Costa Rica [12] 63∼86 88∼94

Cuzick, UK [13] 77 96

and C+H for all three situations (i.e., “Manual”, “IG”, and
“IG+Gradient”), one can see that patient age information
helped to improve sensitivity and accuracy. In fact, patient age
has been an important factor used in cervical cancer screening
guidelines for average-risk women [78], [79]. For example, it
is recommended that women aged less than 21 should not be
screened; for women between 21 and 29 years old, Cytology
alone should be used every 3 years without HPV co-test; for
women between 30 and 65 years old, Cytology should be
used every 3 years with HPV co-test every 5 years; and it
is recommended that cervical cancer screening can stop for
women aged >65 years with adequate screening history. To
seek further explanation for the improvement in classification
accuracy by adding patient age as a feature, we compiled
statistics about patient age from our 280 randomly selected
patient cases, as shown in Table VII; here one can see that
the distribution of disease does differ significantly from one
age group to another, thus making age a useful feature when
comparing patients and performing disease classification. The
best performance was obtained by C+H+A+I (Cytology, HPV,
age, and images) with information gain and gradient-based
learning approaches, which gave much better accuracy and
sensitivity than only using individual tests.

TABLE VII
PATIENT AGE DISTRIBUTION IN 280 RANDOMLY SELECTED PATIENT

CASES.)

Category <21 21-29 30-40 41-65 >65
<CIN2 (Negative) 0 9 48 59 24
CIN2/3+ (Positive) 1 38 53 42 6

In our current work, we perform automatic weight learning
in two situations: 1) We use gradient-based approach to learn
the weights of Data Similarity and Image Similarity; 2) In
order to appropriately integrate the different clinical test results
within Data Similarity, we employ an information gain-based
method. Theoretically, we could utilize the gradient-based
approach for learning in both situations. However, as shown in
Figures 11, 12, and 13, the distributions of clinical test results
(i.e. data terms) have no distinct modes, and gradient/hill
climbing approaches often do not work well on such data.

In contrast, as demonstrated in Figures 14 and 15, the
distributions of Data and Image Similarities are fairly smooth
and have clear modes, thus a gradient/hill climbing approach
was a good fit.

As discussed in Section II-E1, our gradient-based approach
may fall into a local maximum. Therefore, we performed
an additional experiment where we adopt different initial
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values for learning the optimal weights for integrating Data
Similarity and Image Similarity. We utilized three different
starting values for α in Equation 6: 0.0, 0.5, and 1.0. And,
we achieved accuracies of 89.00%, 89.04%, and 88.71%
respectively. Although we got different accuracies here, the
differences between the three results are not statistically signif-
icant (P > 0.05). This shows to some extent that the gradient-
based learning method is not sensitive to initialization and is
effective for learning the weights to integrate Data Similarity
and Image Similarity in our classification task.

One limitation of our approach is that, because of its
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data centric nature, it works well with typical cervigram
images and typical cervical cancer patient cases, but may
have difficulty with outlier images (or patient cases) that do
not closely match any of our expertly annotated examples in
the database. Expanding the expertly annotated case base and
improving patient similarity measures are feasible remedies to
this problem.

We also examined the computational complexity of our
multi-modal classification system. For a single image, (PHOG)
feature extraction takes between 2.9 ∼ 3.1 seconds. It takes
little time (0.2 milliseconds) to compute the image-similarity
score between two images once their features have been
extracted. In our experiments, feature extraction for the 939
images in the expertly labeled database is done offline and
the extracted features are stored, thus reducing the run time
to compute the ROI of an input test image to around 3
seconds. During the patient disease classification phase, we
also pre-compute image features for all images of patients in
the training dataset. Our algorithm does not require any manual
interaction for a testing image. The labeling of a bounding box
is only needed for images in the training database; for a new
test image, the bounding box region of interest is generated
automatically using the bounding box information about top
matching training samples that we have stored in our training
database. Thus, for a test patient case, the run time includes
the time to compute features for all its images (3 seconds per
image), the time to compute its image similarities to patients

in the training set (on average 3.96 seconds), and once image
similarities are calculated, the multi-modal entity coreference
algorithm takes 33 milliseconds to classify the patient case
using all five sources of information on a laptop computer with
4GB memory and 2.0GHz quad-core CPU. Theoretically, the
complexity of our multi-modal entity coreference algorithm
depends on the number of chains in a patients data tree. In
the worst case, suppose a tree has p chains and each chain is
comparable with all chains in the other tree, the complexity
for comparing two trees is then O(p2). For classification, each
test case is computed against all training cases and suppose
we have n training cases in total, then the complexity for
comparing a test case with all training cases is O(n∗p2). Once
the similarity scores are computed, it takes O(nlogn) time to
sort the scores and obtain the top cluster of most similar cases
for classification.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrate that computerized interpre-
tation of cervical images and combinatory tests that integrate
images with other clinical information have the potential to be
used as adjunctive screening or diagnosis tests for differentiat-
ing low-grade cervical lesions (which do not need treatment)
from high-grade lesions and invasive cancer. We presented
an intelligent computer-assisted diagnostic system that can
identify different stages of cervical lesion with fair correlation
by integrating cervical image interpretation, Pap test, HPV
test, and additional clinical information such as pH value and
patient age. We demonstrated how adding images to traditional
Pap and HPV tests can improve sensitivity of detecting high
grade CIN. We also used the framework to evaluate the
sensitivity and specificity of various combinatory tests, and
discovered the value of other parameters such as patient age.
The framework can be extended to other applications that
involve multi-modal classification and efficiently perform data
analysis and data mining to discover unknown linkages and
effective combinatory tests.

In our future work, to further improve the accuracy of
our classification process, it would be interesting to explore
other weighting mechanisms for integrating different types of
clinical and image information. We will explore approaches
that can be used to further reduce the computational cost [80].
For image analysis, additional techniques such as color cali-
bration and illumination correction can be explored to further
improve the quality of patient image similarity computation. In
addition, instead of only using the clinical data available in the
database, we could potentially try to bring in information from
other data sources such as medical literature, apply text an-
notation/mining techniques to extract useful information from
those sources [81]–[84], and use the extracted information as
additional features for our classification task. We will also
attempt to extend our system to more fine-grained multi-class
disease grading instead of binary classification.
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